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A B ST R A CT 

The diversity of life forms that surround us formed through a variety of processes. Speciation researchers use a suite of comparative approaches 
to understand both the generalities and the variance underpinning this diversification. Here, we summarize these approaches and what they have 
taught us, and we then apply them to understand speciation in the night lizards Xantusia, a genus of small lizards found in the arid regions of 
western North America. Although Xantusia species span both a range of phenotypic and genetic divergence, we find that speciation in Xantusia 
appears to be a predictable consequence of divergence in extended periods of allopatry. We conclude by identifying possible areas of growth for 
comparative studies of speciation.
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I N T RO D U CT I O N
When we scan across the tree of life, we can see the diversity 
of ways in which the tips—or the millions of species that con-
stitute Earth’s biodiversity—have formed. In some parts of the 
tree, species have diversified to eat different foods and/or to 
live in different habitats, yet their recent evolutionary origins 
make them genetically very similar (e.g. cichlids, pea aphids; 
Peccoud et al. 2009, McGee et al. 2020). In other clades, species 
seem ecologically interchangeable even though their closest 
ancestors trace back millions of years (e.g. Batrachoseps sala-
manders, rainforest skinks; Wake 2006, Singhal et al. 2018b). 
Additionally, a diversity of barriers maintain species, with 
some species seemingly separated only by assortative mating 
and others separated primarily by selection against hybrids 
(Christie et al. 2022). Additionally, even when barriers to gene 
flow separate species, some groups can experience extensive 
introgression even among distantly related species (Dagilis 
et al. 2022) whereas others remain completely genetically 

distinct. Zooming out to a broad-scale perspective, we find that 
species vary both in the rate at which they form (Cooney and 
Thomas 2021) and how they accumulate across geographical 
space, with some species achieving sympatry early in the di-
vergence process (e.g. cichlids; McGee et al. 2020) and other 
species occurring across space as allopatric replacements (e.g. 
Ensatina salamanders; Wake 2006). Thus, just as we can see a 
diversity of forms across the tree of life, we can also see diver-
sity in how they originated.

One way to understand the diversity of speciation processes 
is through the use of comparative analyses. By summarizing 
across many speciation events, comparative approaches can un-
cover trends and patterns across the myriad ways that speciation 
occurs. In this paper, we first briefly review the types of com-
parative analyses used in speciation research and what we have 
learned from them. Then, we explore a case study of compara-
tive speciation in Xantusia lizards. Finally, we identify open chal-
lenges and directions for comparative speciation research.
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CO M PA R AT I V E  A P P ROA CH E S  TO  S P ECI AT I O N
Below, we describe five types of comparative studies that have 
been employed by speciation researchers, the types of questions 
these studies can help address, and some findings from these 
studies (Table 1).

Pairwise estimates of divergence
In this broad class of studies, metrics of differentiation—such 
as genetic, ecological, and morphological divergence—are as-
sessed between taxon-pairs typically within the same taxonomic 
group (i.e. angiosperm plants, birds, fungi; Moyle et al. 2004, 
Giraud and Gourbière 2012, Freeman et al. 2023). Researchers 
typically also estimate multiple components of reproductive iso-
lation (RI), including strength of mate choice and intrinsic se-
lection against hybrids (Coyne and Orr 1989, Price and Bouvier 
2002, Moyle and Nakazato 2010), as well as total RI from more 
indirect approaches (Singhal and Moritz 2013, Hamlin et al. 
2020, Pulido-Santacruz et al. 2020). Correlations among differ-
entiation and RI metrics can then help uncover the tempo and 
mode of divergence and determine the factors that initiate and 
‘complete’ the speciation process.

As nicely reviewed by Matute and Cooper (2021), these 
studies have shown that both phenotypic divergence (Winger 
and Bates 2015, Freeman et al. 2023, Nosil et al. 2024) and 
RI (Coyne and Orr 1989, Sasa et al. 1998, Moyle et al. 2004) 
often scale with increasing genetic divergence. Further, in many 
clades, postzygotic isolation evolves more predictably than 
prezygotic isolation (Christie and Strauss 2018, Sianta and Kay 
2021). However, these relationships between RI and time are 
not necessarily monotonic—RI can also quickly accrue over 
short spans of divergence (Roux et al. 2016, Singhal and Bi 
2017, Peñalba et al. 2019)—so-called ‘tipping points’ of speci-
ation (Nosil et al. 2017). Other studies have evaluated the rela-
tive importance of ecology in driving speciation, with several 
studies suggesting that ecological divergence can predict gen-
etic divergence and/or RI (Funk et al. 2006, Shafer and Wolf 
2013) while others argue that much of allopatric speciation oc-
curs in the absence of divergent selection (Anderson and Weir 
2022).

Comparative geography of speciation
The arrangement of species in space both reflects the probable 
geographical mode of speciation (i.e. allopatric, parapatric, 
sympatric) and the controls influencing coexistence between 
closely related species. Another class of comparative studies 
considers patterns of species overlap within and across clades 
to understand both the geography of speciation and the factors 
determining species coexistence (Losos and Glor 2003, Weber 
and Strauss 2016).

These studies have shown that even closely related species—
like sister taxa—often have high degrees of range overlap; any-
where from 30% to 90% of sister species are found in sympatry 
across diverse taxa such as plants (Anacker and Strauss 2014, 
Grossenbacher et al. 2014, Christie and Strauss 2018), butterflies 
(Rosser et al. 2015), and fish (Glass et al. 2023). A high degree 
of overlap might suggest that many species either originate in 
sympatry (Fitzpatrick et al. 2009) or achieve sympatry relatively 
quickly after divergence (Anacker and Strauss 2014). However, 
in other groups, secondary sympatry can take millions of years 
to achieve (Weir and Price 2011, McEntee et al. 2018, Pigot et al. 
2018), and is most likely when taxa are high-dispersing, pheno-
typically divergent, and reproductively isolated (Weir and Price 
2011, Pigot and Tobias 2013, 2015, Anacker and Strauss 2014, 
Cooney et al. 2017b, McEntee et al. 2018, Pigot et al. 2018). 
Finally, species range overlap—via either reinforcement (Coyne 
and Orr 1989) or character displacement (Anderson and Weir 
2021)—can drive increased reproductive or ecological diver-
gence, further isolating the species.

Comparative phylogeography and biogeography
Comparative phylogeography and biogeography studies focus 
on species in a common geographical arena and look for con-
cordance in both space and time in phylogeographical breaks or 
species borders. They use genetic data to infer the demographic 
changes that accompany speciation, such as characterizing how 
population subdivision can precipitate lineage divergence and 
how diverging lineages interact via gene flow. These studies often 
also integrate modelling of species ranges through time to better 
understand how changing distributions might affect lineage 

Table 1. Comparative methods that can be used to understand speciation.

Method Description Example question

Pairwise estimates of divergence Comparing extent of reproductive isolation and/or genetic,  
morphological, and ecological divergence among lineages

What is the tempo at which re-
productive isolation evolves?

Comparative geography Comparing patterns of range overlap across closely related lineages How does the extent of ecological 
differentiation affect transition 
rate to secondary sympatry?

Comparative phylogeography Understanding the role of history and demography in structuring  
patterns of genetic diversity across lineages found in a common  
geographical arena

How does historical stability af-
fect lineage persistence?

Macroevolutionary analyses Understanding broad-scale patterns of diversification across traits, 
clades, and biogeographical regions

Which organismal traits predict 
variation in speciation rate?

Comparative genomics Investigating patterns of genetic divergence across closely related  
lineages

Are patterns of genomic differ-
entiation predictable across 
species?
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divergence (Graham et al. 2006, Carnaval et al. 2009, Smith et al. 
2014, Yamasaki et al. 2020). In so doing, these approaches help 
understand the geological and historical factors that help pro-
mote and maintain lineage formation (Bermingham and Moritz 
1998, Edwards et al. 2022).

Here, we focus on a few themes that have emerged from the 
rich and long history of this field (Avise 2000). First, rarely do 
phylogeographical lineages separated by biogeographical or 
habitat barriers follow the same evolutionary trajectory. Across 
a single barrier, codistributed lineages typically span a range of 
divergence times and show variance in the location of parapatric 
boundaries (Avise 1992, Whinnett et al. 2005, Soltis et al. 2006, 
Rosenblum and Harmon 2011, Leaché et al. 2020). This variance 
could be because species experience these barriers differentially 
depending on their biology (Papadopoulou et al. 2009, Fouquet 
et al. 2012) and/or the cyclical nature of many of these barriers 
(Dynesius and Jansson 2000). Cyclical barriers can result in gene 
flow eroding divergence among isolated populations at different 
time points and to different strengths across their history (Smith 
et al. 2014). Second, areas that promote greater population per-
sistence—such as geographical regions that have been more 
stable through time—can promote the persistence and build-up 
of species (Graham et al. 2006, Carnaval et al. 2009, Smith et al. 
2014, Yamasaki et al. 2020). Conversely, unstable regions—such 
as regions of high environmental harshness—often show evi-
dence of greater initiation of speciation but lower rates of com-
pletion (Botero et al. 2014, Dantas-Queiroz et al. 2023). Third, 
gene flow is fairly common among diverging lineages (Winger 
2017, McLaughlin et al. 2020), even in cases where lineages are 
not currently overlapping (Peñalba et al. 2019, Pulido-Santacruz 
et al. 2020). This finding highlights that species geographical ar-
rangements shift through time, allowing gene flow even between 
currently allopatric lineages. Finally, despite a rich verbal his-
tory in phylogeography for the potential role of bottlenecks and 
founder events in speciation (Barton and Charlesworth 1984), 
demographic modelling of population sizes through time sug-
gests that genetic drift is unlikely to be a major force in triggering 
lineage divergence (Knowles 2001).

Macroevolutionary analyses of species richness and 
diversification

Macroevolutionary studies are inherently comparative and thus 
address a wide range of questions about the speciation process. 
Here, we focus on two types of macroevolutionary studies. The 
first reconstructs trait evolution and biogeographical area across 
clades to understand how transitions in traits and landscapes 
correlate with shifts in diversification patterns (Hughes and 
Eastwood 2006, Whittall and Hodges 2007, Matzke 2014). The 
second endeavours to explain diversity gradients in species rich-
ness and speciation rate found across traits, geographical distri-
butions, and the tree of life (Rabosky 2016, Schluter and Pennell 
2017). Note that some macroevolutionary studies measure di-
versification (or the net balance between speciation and extinc-
tion) whereas others focus on speciation only.

A few themes emerge from these studies. First, higher diversifi-
cation rates often fail to predict greater species richness (Tietje et 
al. 2022), due to factors including clade age (McPeek and Brown 
2007), ecological limits (Ricklefs 2007, Rabosky 2009), and 
phylogenetic or geographical scale (Hutter et al. 2017). This is 

perhaps clearest in studies of the Latitudinal Diversity Gradient, 
or the pattern of increasing species richness as one moves from 
the polar caps to the equator (Mittelbach et al. 2007). In many 
taxa, the gradient in species richness across latitude is not mir-
rored by a gradient in speciation rate ( Jetz et al. 2012, Economo 
et al. 2018, Rabosky et al. 2018, Igea and Tanentzap 2020, Title 
et al. 2024), but see Cardillo (1999). In fact, this pattern is often 
inverted, with higher rates of speciation in regions with lower 
species diversity (Harvey et al. 2020). Second, several traits cor-
relate with variation in species richness and/or diversification 
rate, such as asexuality in reptiles, mutation rate in birds, seed 
size in plants, and male-biased sexual selection in birds (Lanfear 
et al. 2010, Igea et al. 2017, Cally et al. 2021, Moreira et al. 2021). 
However, these patterns are often inconsistent even within the 
same clade (Helmstetter et al. 2023). In fact, in many groups, 
organismal and environmental traits rarely explain a significant 
portion of the variation in speciation rate (Title et al. 2024). This 
holds true even when traits with direct relevance to the speci-
ation process are considered, such as the rate at which song di-
vergence in birds evolves (Freeman et al. 2022), the rate at which 
postzygotic isolation evolves in birds and flies (Rabosky and 
Matute 2013), or the rate at which isolated populations form in 
birds and lizards (Singhal et al. 2018a, 2022, Wacker and Winger 
2024) but see Harvey et al. (2017). Finally, perhaps some of the 
strongest predictors of speciation rate are not trait identity but 
the rates at which these traits evolve (Rabosky et al. 2013, Igea et 
al. 2017, Beltrán et al. 2021, Cooney and Thomas 2021). While 
theory predicts this correlation—phenotypic change can pre-
cipitate both ecological divergence and RI, after all—these cor-
relations might be technical artefacts resulting from comparing 
two time-varying processes (Harmon et al. 2021).

Comparative genomics of speciation
With the increasing ease of sequencing whole genomes for 
diverging species, a new class of studies have emerged: the com-
parative genomics of speciation. By sequencing whole genomes 
for multiple individuals across multiple species, these studies 
primarily address two major classes of questions. First, what are 
the relative roles of genomic processes such as selection, intro-
gression, and genome structure in driving divergence across 
species? These studies have shown that loci putatively linked to 
adaptive phenotypes often exhibit the greatest genetic differen-
tiation across species (Riesch et al. 2017, Edelman et al. 2019, 
Todesco et al. 2020) and that adaptation can make divergence 
with gene flow more likely (Egan et al. 2008, Kautt et al. 2020). 
Further, as has long been appreciated by plant biologists (Grant 
1971), these studies illustrate that introgression is common, 
even among species that are deeply diverged (Singhal et al. 2021, 
Barley et al. 2022). Further, this introgression can help fuel spe-
ciation and species divergence (Lamichhaney et al. 2018, Meier 
et al. 2023, Rosser et al. 2024), especially when the introgressed 
loci are under strong selection. Finally, these studies have iden-
tified an important role for structural variation in creating and 
maintaining species boundaries (McGee et al. 2020, Todesco et 
al. 2020).

Second, can we predict the heterogeneity in both genomic di-
vergence and introgression across interacting species pairs? As 
lineages form, divergence across the genome is typically uneven, 
and if lineages are exchanging genes, levels of gene flow across 
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the genome are also typically uneven. To address this question, 
researchers measure the repeatability of genomic divergence and 
introgression across multiple species pairs. Thus far, studies have 
found modest (Ravinet et al. 2016, Delmore et al. 2018, Meier 
et al. 2018) to strong evidence for predictability (Van Doren et 
al. 2017, Vijay et al. 2017, Langdon et al. 2022). Predictability 
can arise due to direct selection (Renaut et al. 2013, Pereira et 
al. 2016, Nouhaud et al. 2022), background selection (Burri et 
al. 2015, Stankowski et al. 2019, Langdon et al. 2022), selective 
introgression (Edelman et al. 2019, Rossi et al. 2024), and/or 
sorting of ancestral variation (Irwin et al. 2016) but see Schluter 
and Rieseberg (2022). Finally, these studies show that repeat-
ability increases as species divergence becomes deeper (Singhal 
and Bi 2017, Delmore et al. 2018, Stankowski et al. 2019), as ver-
bally predicted by Burri et al. (2015).

C A S E  ST U DY: S P ECI AT I O N  I N  XANTUSIA 
L I Z A R D S

Introduction to system
Here, we explore the potential of comparative approaches 
to speciation through a study of the night lizards Xantusia 
(Xantusiidae). These small, secretive lizards are split into 14 
recognized species, which are distributed across arid regions of 
the southwestern USA and México (Uetz et al. 2023). Xantusia 
species fall into one of two habitat specialist types (Fig. 1). 
The rock ecomorph is typically found among rock-crevice and 
boulder habitats, and these species have longer limbs and digits, 
flatter and longer bodies, and more colourful patterning than the 
plant ecomorph, which is often found within decaying plant ma-
terial or under bark across yucca, agave, and other plants (Bezy 
2019). Xantusia has transitioned between these two morphs at 
least seven times (Noonan et al. 2013), and convergence across 
these transitions is high. In fact, morphological data suggested 
two rock forms (X. bolsonae and X. henshawi) were closely re-
lated until genetic data revealed they are distant relatives (Webb 
1970). Further, some relatively recent species splits are associ-
ated with a transition in ecomorph type (e.g. X. sierrae), posing 
a natural contrast between speciation events resulting in two 
species of the same ecomorph (‘nonecological’ speciation) and 

those that result in species of different ecomorphs (‘ecological’ 
speciation) (Schluter 2009).

In this work, we explore patterns of Xantusia speciation using 
a population genetic dataset of 140 individuals collected across 
11 nominal species. Before we can understand speciation in 
Xantusia, we must first understand what the species units are. 
Xantusia lizards are notable for their extremely low dispersal 
rates—in fact, some individuals are repeatedly recaptured over 
years from the same locality (Zweifel and Lowe 1966) and natal 
dispersal is estimated at just 4 m in X. vigilis (Davis 2011, Davis 
et al. 2011). As might be expected given their low vagility, many 
species are composed of deeply structured, putatively mor-
phologically cryptic phylogeographical lineages (Lovich 2001, 
Sinclair et al. 2004). Xantusia also tend to occur in patchy distri-
butions across the landscape (Zweifel and Lowe 1966), as their 
presence is thought to be dictated (in part) by suitable habitat. 
Species thus consist of populations in high density, separated by 
large swathes of inhospitable habitat (Bezy 2019). Low dispersal 
and geographical patchiness make it difficult to identify the 
boundary between populations and species. To address these 
challenges, we use genetic analyses—i.e. phylogenetic inference, 
population clustering, and isolation-by-distance tests—to de-
fine species boundaries in Xantusia.

Having delimited species in this group, we then apply ap-
proaches from comparative phylogeography, comparative geog-
raphy, macroevolutionary studies, and pairwise divergence 
studies to understand the tempo, demography, and geography of 
Xantusia speciation. (We wait for a Xantusia reference genome 
before we apply the approaches from comparative genomics 
described above.) We might expect patterns to vary across 
type of speciation—i.e. ‘ecological’ versus ‘nonecological’ spe-
ciation—and based on the age of a species pair (Stankowski 
and Ravinet 2021, Bolnick et al. 2023). For example, ecological 
speciation is typically thought to be more robust to gene flow 
than nonecological speciation (Anderson and Harmon 2014), 
given that selection to different environments can counteract the 
homogenizing effects of gene flow. Further, gene flow is typically 
thought to decline to zero as species accumulate divergence and 
barriers to reproduction (Sobel and Chen 2014). Thus, we might 
predict that gene flow would be more common among pairs that 

Figure 1. Xantusia species consist of two ecomorphs: plant-specialist and rock-specialist. The rock ecomorph has longer limbs, a flatter body, 
and more colourful patterning than the plant ecomorph, and there have been multiple transitions between the two ecomorphs (see Supporting 
Information Fig. S5). Images by Julie Johnson of Life Science Studios.
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share the same ecomorph and that are younger. We test these ex-
pectations to better understand the origins of this clade.

M AT E R I A L S  A N D  M ET H O D S

Sampling, genetic data collection, and processing
We sampled 140 individuals from 11 of the 14 recognized spe-
cies in Xantusia (Uetz et al. 2023). Where possible, we sampled 
broadly across species ranges to capture any phylogeographical 
structure within species (Lovich 2001, Sinclair et al. 2004, 
Leavitt et al. 2007); number of samples collected per species 
ranged from one to 76 (median: seven individuals). In addition, 
we sampled three individuals in the genus Lepidophyma to use as 
an outgroup. In total, we sampled 143 individuals (Supporting 
Information Table S1), most of which derived from natural his-
tory museum collections and nine of which were newly collected 
for this study.

From each individual, we extracted DNA and then prepared 
double-digest restriction-site associated DNA (ddRAD) libraries 
following Peterson et al. (2012). Briefly, we digested DNA using 
MspI and Sbf I, size-selected from 415 to 515 bp, and then pre-
pared uniquely barcoded ddRAD libraries with an 8-bp unique 
molecular identifier (UMI) ligated to the cut site. Equimolar 
amounts of libraries were then pooled and sequenced on a single 
100SE lane of an Illumina NovaSeq 6000 at the Vincent J. Coates 
Genomics Sequencing Lab, QB3 Genomics, UC Berkeley.

After trimming the 8-bp UMI, we demultiplexed reads using 
stacks v.2.64 (Rochette et al. 2019). We then used ipyrad v.0.9.93 
to assemble the data and call variant sites (Eaton and Overcast 
2020). We clustered the data at 85% similarity, requiring a 
minimum depth of six for variant-calling and two or fewer alleles 
per site. We then generated a second assembly that excluded the 
outgroup, keeping all other parameters the same.

Additionally, we collated previously published mitochondrial 
DNA (mtDNA) data for the ND4 gene (Lovich 2001, Sinclair 
et al. 2004, Leavitt et al. 2007). We included individuals from 
Cricosaura typica and the genus Lepidophyma as outgroups. After 
downloading these data from GenBank, we aligned them using 
mafft v.7.487 (Katoh et al. 2009). Because these are entirely 
coding sequences, we manually checked the alignment for the 
absence of indels using Geneious v.2022.2.2 (Kearse et al. 2012).

Lineage delimitation
Our comparative speciation analyses required us to identify the 
putative lineages in Xantusia. We define lineages as independ-
ently evolving, genetically cohesive units. To do so, we con-
ducted both phylogenetic and population structure analyses to 
understand how genetic diversity in this genus is apportioned 
into lineages. First, using the outgroup assembly, we concaten-
ated all ddRAD loci assembled in > 50% individuals. We then 
inferred an individual phylogeny in IQ-TREE v.2.2.0 (Minh et al. 
2020), using ModelFinder to automatically determine and apply 
the best-fitting model of sequence evolution (Kalyaanamoorthy 
et al. 2017). We additionally calculated nodal support through 
Shimodaira–Hasegawa approximate likelihood ratio tests 
(SH-aLRT) (Anisimova and Gascuel 2006). Then, we used 
IQ-TREE to infer the mtDNA topology; here, we partitioned 
the alignment by coding position and used PartitionFinder to 

automatically identify the best partition and molecular evolu-
tion scheme.

We next inferred population structure across the genus using 
two approaches. We first created 10 filtered variant sets that ran-
domly sampled one variable site per locus, requiring sites to be 
> 50% complete and with a minor allele count ≥ 2 (Linck and 
Battey 2019). Using one of these filtered variant sets, we mapped 
individuals in genotypic space using a principal component 
analysis (PCA), as implemented in glPCA in adegenet v.2.1.10 
( Jombart 2008). Here, missing values are replaced with mean 
allele frequency values. Our phylogenetic analyses and PCA re-
sults (see Results) revealed that Xantusia consists of three major 
clades or clusters, respectively. For each of these three groups, we 
ran ADMIXTURE v.1.3.0 (Alexander et al. 2009) across all 10 
filtered variant sets, allowing the number of genetic clusters (K) 
to vary from 1 to 12. We estimated the cross-validation (CV) 
score to determine the best-fitting K value for each set of runs.

Our phylogenetic and population structure analyses revealed 
multiple phylogeographical lineages within currently recognized 
species, all of which had been identified in previous studies 
(Lovich 2001, Sinclair et al. 2004, Leavitt et al. 2007). Here, we 
treated these lineages as putative species-level taxa alongside cur-
rently recognized species-level taxa. To explore the evolutionary 
distinctiveness of these species-level taxa, we investigated how 
isolation-by-distance patterns accrue between taxa. If taxa are 
acting as independent evolutionary units, they would experience 
no or reduced gene flow between them, resulting in a break in 
genetic continuity across geographical space (Good and Wake 
1992, Hausdorf and Hennig 2020). We calculated genetic diver-
gence across space as pairwise FST between individuals (Reich et 
al. 2009) and assessed the significance of isolation-by-distance 
using Mantel tests as implemented in the R package vegan v.2.6 
(Dixon 2003). Given our study did not aim to formally delimit 
and revise Xantusia taxonomy, we refrained from applying more 
statistical approaches such as multispecies coalescent delimi-
tation methods. Ultimately, we found equivocal evidence for 
the genetic distinctiveness of two recognized species and two 
phylogeographical lineages. Because the recognized species had 
been previously diagnosed as morphologically distinct and all 
species-level taxa showed some evidence for being genetically 
distinct, our subsequent analyses implemented an operational 
taxonomy that included all identified recognized species and 
phylogeographical lineages.

Finally, for this operational taxonomy, we inferred a taxon-level 
phylogeny using SNAPP v.1.6.1 (Bryant et al. 2012), a multispecies 
coalescent approach that uses single nucleotide polymorphism 
(SNPs) to infer a species tree. Because we lacked the appropriate 
outgroup sampling to use fossil calibrations (Noonan et al. 2013), 
we instead inferred relative divergence times. We set the mutation 
rates u and v to 1.0, and for the species tree prior we used a gamma 
distribution ~ (1, 250). We ran four independent analyses for 1 
million generations each, sampling every 100 generations. We as-
sessed for convergence by visualizing the log-likelihood Markov 
chain Monte Carlo (MCMC) trace and checking effective sample 
size values. Then, we combined the posterior probabilities for each 
run using LogCombiner and used the combined posteriors to as-
semble a maximum clade credibility (MCC) tree in TreeAnnotator, 
after discarding the first 20% of samples as burn-in.
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Mapping ecomorphological transitions
A key goal of our study is to compare speciation patterns across 
ecomorphs, so we first characterized the evolution of ‘plant’ and 
‘rock’ ecomorphs in Xantusia. We coded taxa by their ecomorph 
type based on sources from the primary literature (Sinclair et al. 
2004, Leavitt et al. 2007, Noonan et al. 2013). We then mapped 
the evolution of the ecomorphs across the species tree using 
the stochastic character mapping approach implemented in 
phytools v.2.1-1 (Huelsenbeck et al. 2003, Revell 2024). Here, 
we used the equal-rates model, in which the transition rates be-
tween the two morphs were equal; other models were less good 
fits to the data (Supporting Information Table S2). We ran simu-
lations for a posterior sample of 1000 species trees and ran 1000 
simulations across the consensus species tree.

Comparative speciation of Xantusia
We conducted a series of analyses to characterize the tempo, 
demography, and geography of speciation in Xantusia. In all 
cases, we compared patterns between all possible species pairs 
within each of the three major clades. First, we calculated esti-
mates of genomic divergence (FST, dxy) on the full variant set and 
additionally calculated dxy on the mitochondrial data (Nei and Li 
1979, Reich et al. 2009).

Then, to understand the demography of speciation in Xantusia, 
we conducted four analyses, each of which offers differing reso-
lution onto the temporal and spatial extent of gene flow. First, 
we fit demographic models following the approximate Bayesian 
computation (ABC) approach implemented in DILS (Fraïsse 
et al. 2021). DILS generates simulated data under current isola-
tion (strict isolation, ancient migration) versus ongoing migra-
tion (isolation-with-migration, secondary contact) divergence 
models under both constant and changing population sizes. It 
then uses a Random Forest classifier to determine which model 
best fits the empirical data. Ultimately, this analysis estimates 
the ‘probability of migration’, or the likelihood that there is on-
going gene flow between the two lineages. Second, we mapped 
the population clustering results across geographical space. 
Individuals can appear to be genetically admixed even when they 
are not hybrids (Lawson et al. 2018), but putatively admixed in-
dividuals are more probably the result of hybridization if they 
occur near the geographical borders between their parental lin-
eages. Third, we compared patterns of mitochondrial to nuclear 
lineage identity to determine if there is any evidence for mito-
chondrial capture (Toews and Brelsford 2012). Mismatches 
in clade identity between mitochondrial and nuclear markers 
can simply result from incomplete lineage sorting. However, 
similar to our population clustering analysis, introgression is a 
more likely scenario if these mismatched individuals occur at 
the geographical boundaries between their mitochondrial and 
nuclear donor lineages. Finally, we used Dsuite v.0.5 to infer 
the D-statistic across all possible trios (Malinsky et al. 2021). 
Introgression involving ancestral branches can lead to multiple 
descendant lineages showing evidence for introgression; we ac-
counted for this possibility by summarizing our results with the 
f-branch statistic (Malinsky et al. 2018).

Additionally, to understand the spatial dynamics of speci-
ation in Xantusia, we analysed geographical range overlap in 
the genus. For each operational taxonomic unit (OTU), we 

approximated geographical range as the alpha hull spanning 
all points (alphahull v.2.5; Pateiro López and Rodríguez Casal 
2010). Then, we measured pairwise range overlap and geograph-
ical distance between geographical ranges.

Data analysis and visualization
All scripts used in data analysis and visualization are avail-
able at https://github.com/singhal/xantusia. Our scripts used 
Python v.3.9.12 and R v.4.3.1, including the R packages ape 
v.5.7, cowplot v.1.1.3, dplyr v.1.1.4, ggplot2 v.3.4.4, and sf v.1.0 
(Paradis et al. 2004, Pebesma 2018, Wickham et al. 2019, Wilke 
et al. 2019).

R E SU LTS  A N D  D I S C U S S I O N

Lineage delimitation
We successfully collected an average of 513 kb across 6338 loci 
across our 140 in-group individuals. These genetic data showed 
that Xantusia consists of three major clades (Fig. 2; Supporting 
Information Fig. S1): one consists of species distributed in 
México (X. gilberti, X. sherbrookei, X. bolsonae, X. sanchezi, X. 
extorris), another consists of X. henshawi, and the final consists 
of species distributed mainly in the USA (X. bezyi, X. wigginsi, 
X. arizonae, X. sierrae, X. vigilis). The relationship among these 
three clades is uncertain; our nuclear and mitochondrial ana-
lyses differ with respect to the placement of the X. henshawi clade 
being either sister to the vigilis clade (nuclear data) or sister to 
the México clade (mtDNA) (Fig. 2; Fig. S2).

Both our nuclear and mitochondrial phylogenetic trees 
and population clustering analyses revealed the presence of 
deep structure within several recognized Xantusia species, 
confirming previous results based on fewer markers (Fig. 2; 
Supporting Information Fig. S2; Lovich 2001, Sinclair et al. 
2004, Leavitt et al. 2007). Xantusia henshawi—a species that 
ranges from southern California to northern Baja California—
consists of three deep lineages; geographical borders between 
these lineages fall partially along fault lines (Fig. S8; Lovich 
2001). Isolation-by-distance (IBD) patterns suggest that these 
monophyletic lineages are acting as independent evolutionary 
units (Fig. S3).

The wide-ranging species X. vigilis is paraphyletic and con-
sists of five lineages structured by geography (Fig. 2): the San 
Jacinto (SJ), Yucca Valley (YV), Owens Valley (OV), Kern 
Canyon & Antelope Valley (KCAV), and Eastern Mojave (EM) 
lineages. Names here follow Leavitt et al. (2007). Although the 
best-fitting cluster analysis collapsed the X. vigilis SJ and YV lin-
eages into a single cluster, they are reciprocally monophyletic 
(Fig. 2), and IBD patterns are discontinuous across the two lin-
eages (Supporting Information Fig. S3). Similarly, while X. vigilis 
OV and X. sierrae belong to a single genetic cluster (Fig. 2), IBD 
patterns suggest they are evolutionarily independent (Fig. S3). 
The relationship between X. vigilis KCAV and EM is more am-
biguous. They are not reciprocally monophyletic and share a 
common IBD pattern across space (Fig. S3) but fall into distinct 
genetic clusters (Fig. 2). Finally, although the genetic clustering 
results grouped together the species X. bezyi and X. wigginsi, 
these are not sister species, and IBD patterns suggest they are 
evolutionarily distinct (Fig. S3).
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Populations within low-vagility species are often genetically 
quite divergent. When species also occupy patchy distributions, 
geographical gaps between such populations can be hard to dis-
tinguish from species range boundaries. Thus, in low-dispersing, 
patchily distributed species like Xantusia, determining the gen-
etic transition between population and species can seem arbi-
trary (Huang 2020). We see evidence for these challenges in 
the equivocal support for the evolutionary distinctiveness of X. 
vigilis KCAV and EM. However, for the majority of Xantusia taxa, 
the genetic analyses—i.e. phylogenetic reconstructions, genetic 
structure inference, and IBD patterns—provided a coherent per-
spective on species boundaries for the majority of Xantusia taxa. 
Indeed, within OTUs, we find strong evidence for continuous 
IBD (Supporting Information Fig. S4), suggesting that Xantusia 
lizards are moving enough among habitat patches to maintain 
genetic cohesion (Prates et al. 2022). However, very few OTUs 

share parapatric range boundaries or overlap (see Fig. 6B). So, 
while our results indicate that our operational taxonomy is ro-
bust, we do not yet know if these OTUs have evolved sufficient 
reproductive barriers and/or ecological divergence to stably co-
exist with congenerics.

Mapping ecomorphological transitions
The species tree for Xantusia recapitulated most of the major 
patterns seen in the individual-based nuclear and mitochon-
drial tree (Fig. 3), with most discrepancies mapping to nodes 
with low branch support. Onto this tree, we used stochastic 
mapping to infer ecomorph transitions, identifying an average 
of 6.7 changes in ecomorph across the Xantusia phylogeny 
(Supporting Information Fig. S5). The most likely ancestral 
state was the plant ecomorph (Sinclair et al. 2004, Noonan et 
al. 2013), and in the most common mapping, there were an 

Figure 2. Phylogenetic and population structure of the operational taxonomic units (OTUs) in the genus Xantusia. A, the nuclear phylogeny 
was inferred with maximum likelihood on an alignment of 6233 loci (504 kb); tree rooted with Lepidophyma (not shown). Species-level and 
interspecific nodes with support values > 95% are marked with white circles; support values measured using approximate SH likelihood ratio 
tests. B, genetic clustering was inferred using ADMIXTURE after splitting the genus into three clade-level groups (see Supporting Information 
Fig. S1); results are combined here for visualization. C, maps illustrating the sampling distribution for each OTU.
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estimated five transitions from the plant to rock ecomorph and 
zero transitions from the rock to plant ecomorph. While most 
transitions are inferred to be relatively deep in the clade, one 
transition maps to the relatively recent split between X. vigilis 
OV and X. sierrae. Bezy (2019) suggested that Xantusia popula-
tions moved from living in highly flammable plants to rock crev-
ices during extended periods of fire regime. This shift in habitat 
then precipitated the convergent evolution of the rock form. 
Because ecomorph transitions occurred across a range of phylo-
genetic depths in Xantusia (Fig. S5), these habitat shifts prob-
ably occurred across multiple distinct time points in the history 
of the genus.

Comparative speciation of Xantusia
Speciation dynamics vary across Xantusia. Some speciation 
events are associated with a shift in ecomorph type (i.e. X. vigilis 
OV and X. sierrae) while others are between recognized spe-
cies of the same ecomorph (i.e. X. sanchezi and X. extorris), and 

others are between putatively cryptic OTUs (i.e. X. henshawi 1 
and X. henshawi 2). These splits span a wide range of genetic di-
vergence, with FST values ranging nearly continuously four-fold 
from 0.16 to 0.86 (Fig. 4), with no evidence that genetic diver-
gence between ecomorphs or between putatively cryptic OTUs 
is distinct from that between other species pairs.

Although we are increasingly finding evidence for gene flow 
during divergence (Marques et al. 2019), Xantusia is different. 
Demographic modelling provided no evidence that any of 
these species are experiencing ongoing migration (Fig. 5); the 
highest probability of migration was only P = 0.20. In similar 
studies in other systems, taxa transition from having a high prob-
ability of ongoing migration to low over a narrow range of gen-
etic divergence—e.g. from a net genetic divergence of 0.5% to 
2% (Roux et al. 2016, Peñalba et al. 2019, Fraïsse et al. 2021). In 
Xantusia, however, the probability of migration did not vary as a 
function of either ecological or genetic divergence between taxa. 
These results suggest that Xantusia species were mostly isolated 

Figure 3. Evidence for hybridization and introgression across Xantusia based on four analytical approaches: identifying putative cases of 
mtDNA introgression, pinpointing probably admixed individuals based on genetic population clustering, using the D-statistic approach, and 
applying demographic modelling. Lines connect operational taxonomic units (OTUs) between which hybridization or introgression was 
detected; line colour indicates under which approach. Phylogeny is the species tree inferred with SNAPP; nodes labelled with points have 
posterior probability ≥ 0.95. Tips are coloured by the ecomorph identity of OTUs: plant-specialist (green) versus rock-specialist (brown). For 
the D-statistic results, we do not map introgression events involving ancestral branches. Note that absence of evidence for introgression should 
not be treated as a true absence; with greater geographical sampling or other analytical approaches, we might uncover other introgression 
events. Introgression as inferred by the D-statistic is particularly common, even among nonsister species, and some species comparisons show 
evidence for introgression across multiple approaches (e.g. X. vigilis KCAV and EM).

Figure 4. Patterns of genetic isolation and divergence across Xantusia. Genetic divergence—as measured by (A) FST and dxy, (B) FST and relative 
divergence time, and (C) FST and mtDNA dxy—is highly correlated across pairwise operational taxonomic unit (OTU) comparisons. We only 
show comparisons between OTUs in the same major clade (see Supporting Information Fig. S1); all comparisons are coloured by the habitat 
types of the OTU pair.
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for most of the divergence process. However, our D-statistic ana-
lyses identified multiple probable cases of introgression (Fig. 3; 
Supporting Information Fig. S6), suggesting that there was likely 
to be opportunity for sporadic hybridization among the species. 
In addition, we found some evidence of admixed individuals 
located near the parapatric borders between OTUs, including 
two probable cases of mtDNA introgression (Fig. S7) and three 
probable cases of nuclear admixture (Figs S8–S10). Our re-
sults identify a few OTU comparisons—i.e. X. vigilis KCAV and 
EM—where multiple approaches identified evidence for gene 
flow (Fig. 3), and we find multiple cases of gene flow between 
nonsister species with geographical distributions that are cur-
rently geographically disjunct—i.e. X. gilberti and X. sanchezi. 

However, although we might expect more gene flow between 
ecomorphs or between more closely related lineages, we find no 
such pattern (Fig. S11). Instead, gene flow in this group appears 
to be largely unpredictable and somewhat limited.

Under allopatric speciation, closely related, recently diverged 
species are not expected to overlap (Fitzpatrick et al. 2009, 
Rovito 2017), as seen in Xantusia (Fig. 6). As further evidence 
of allopatric speciation, breaks between Xantusia taxa align with 
known biogeographical breaks. For example, X. bolsonae, X. 
extorris, and X. sanchezi are found in continental Mexico while 
X. gilberti and X. sherbrookei are found in Baja California, X. 
vigilis EM is restricted to the Mojave Desert relative to the rest 
of its clade, which is found in nonarid environments, and X. 

Figure 6. A, minimum geographical distance; and B, range overlap by relative divergence time between pairwise comparisons of Xantusia 
operational taxonomic units (OTUs). Points are slightly jittered for visualization. We only show comparisons between OTUs in the same 
major clade (Supporting Information Fig. S1); all comparisons are coloured by the habitat types of the OTU pair. In Xantusia, closely related 
species are geographically proximate. However, range overlap is uncommon between both closely related and distantly related OTU pairs.

Figure 5. Likelihood of ongoing migration between pairwise operational taxonomic unit (OTU) comparisons. We only show comparisons 
between OTUs in the same major clade (Supporting Information Fig. S1); all comparisons are coloured by the habitat types of the OTU 
pair. The grey box spans the ‘grey zone’ of speciation originally identified by Roux et al. (2016), or the range of genetic divergence in which 
populations transition from experiencing ongoing migration to complete isolation. We find no such transition; ongoing migration was unlikely 
across all OTU pairwise comparisons.
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henshawi 2 and 1 are separated by the Elsinore Fault. However, 
even under allopatric speciation, we might expect that, with 
time, species will expand their ranges to come into secondary 
contact. Achieving secondary sympatry was a key part of the 
species cycle as envisioned by Mayr (1963), occurring only after 
species have accumulated sufficient reproductive barriers and 
ecological divergence to coexist stably. Yet, ranges in Xantusia 
are relatively stable. Although increased sampling at geograph-
ical gaps between species might change our inference, just three 
of 49 (6.1%) OTU comparisons showed evidence of significant 
overlap (measured here as > 20% overlap of the smaller range; 
Fig. 6). One of the few cases of overlap is between the rock 
ecomorph X. bolsonae and the plant ecomorph X. extorris, sug-
gesting perhaps that niche divergence between these forms al-
lows their stable coexistence. However, in the group as a whole, 
unlike what has been seen in other groups, neither time since 
split (Fitzpatrick et al. 2009, Rosser et al. 2015) nor ecological 
differentiation (Pigot and Tobias 2013, Glass et al. 2023) makes 
overlap more likely. Other taxon groups in which low overlap 
has been reported are gophers and plethodontid salamanders 
(Fitzpatrick et al. 2009, Rovito 2017), both of which—similar to 
Xantusia—are low-dispersing, secretive species. Possibly, these 
species are crawling towards bigger ranges very slowly and will 
require much more time before they achieve significant range 
overlap. Low range overlap might also reflect the effects of bio-
geographical history, as these ranges probably expanded and 
contracted in response to Pleistocene glacial cycles (Bezy et al. 
2020). Alternatively, perhaps communities containing Xantusia 
are relatively stable, each hosting a single species of Xantusia that 
replaces congenerics in different geographical regions (see also 
Ensatina and Batrachoseps; Wake 2006).

Summarizing across these results, the story of speciation in 
Xantusia seems fairly straightforward. An ancestral population 
becomes two populations, perhaps due to vicariance or dispersal 
across a geographical barrier (like the San Jacinto and Elsinore 
faults that appear to split X. henshawi OTUs; Lovich 2001). As 
the populations diverge, these geographical barriers—combined 
with the low vagility of these species—maintain isolation with 
little to no opportunity for gene flow. In some cases, perhaps 
when forced into rock habitats during high wildfire regimes, the 
populations might become ecologically distinct. With enough 
time, the populations emerge as distinct species, with almost no 
build-up of Xantusia species diversity within an ecological com-
munity.

F U T U R E  D I R ECT I O N S
Through our review of the literature, and our own analysis of 
comparative speciation in Xantusia, we identified some open 
challenges and opportunities for our field that we detail below.

First, comparative studies of speciation require us to first en-
sure we have delimited units. For many taxa, existing taxonomies 
will suffice. Particularly for understudied taxa or taxa that exhibit 
minimal morphological divergence (Pfenninger and Schwenk 
2007), existing taxonomies might be inaccurate. Our own study 
exemplifies this—the recognized taxonomy for Xantusia in-
cludes the species X. vigilis, a wide-ranging species that spans the 
southwestern USA and northern México. The new genome-scale 

data presented here confirm previous results (Sinclair et al. 2004, 
Leavitt et al. 2007) that this species is a paraphyletic assemblage 
of five OTUs (Fig. 2). Similarly, X. henshawi consists of three 
deeply divergent OTUs (Fig. 2). Xantusia henshawi and X. vigilis 
sensu stricto differ from their constituent OTUs across multiple 
axes, including levels of genetic diversity and geographical range 
size (Supporting Information Table S3). Thus, our taxonomic 
framework could have impacted subsequent inferences about 
the biology and history of a taxon. As such, before we could 
study speciation in Xantusia, we had to update the taxonomy. 
While inferring the revised taxonomy was relatively straightfor-
ward, we introduced circularity by using the same genetic data 
to both define our revised taxonomy and understand speciation 
dynamics. After all, key processes such as gene flow both influ-
ence species boundaries and our understanding of speciation 
dynamics [but see Smith and Carstens (2020) for a potential 
solution]. Further, while not an issue in this study, some com-
parative analyses—i.e. inferring speciation rates—require all 
units to be species-level, since the addition of population-level 
variation can bias results. Thus, how to effectively integrate spe-
cies delimitation with studies of speciation remains an open 
challenge.

Once comparable units have been defined, comparative 
studies of speciation require comparative datasets. Collecting 
such datasets requires both broad-scale sampling across units 
and geography and identification of biologically relevant data 
that are homologous across scale. As we see in this study, bio-
diversity resources such as natural history museums can serve 
an indispensable role by allowing researchers to efficiently 
sample the geographical breadth of species (Nachman et al. 
2023). As also seen in this study, the growth of high-throughput 
sequencing facilitates comparative work, as genomic data can 
make it easier and cheaper to collect homologous data across 
phylogenetic scales. However, other data remain challenging, 
expensive, and time-consuming to collect. For example, a limi-
tation of our study is that we coded OTUs as either ‘rock’ or 
‘plant’ ecomorphs based on literature surveys. However, spe-
cies exhibit heterogeneity in ecomorph type (Bezy 2019)—e.g. 
some X. vigilis EM individuals have more rock-like morphology 
and habitat preference. Ideally, we would have captured this vari-
ance by measuring ecomorphology and habitat use to create 
a more continuous metric of habitat specialization; doing so 
would have required extensive museum and/or fieldwork, how-
ever. The difficulties of collecting comparative data can bias us 
towards studying well-resourced, tractable species and/or easy-
to-measure traits such as body size and bioclimatic variables. 
Potential solutions include crowd-sourcing the digitization of 
trait data (Cooney et al. 2017a) and using machine learning on 
museum specimens or community science datasets (Hantak et 
al. 2022, Weeks et al. 2023). However, estimating RI—which in 
many ways has become synonymous with understanding speci-
ation (Rabosky 2016)—has few shortcuts. Thus, how to effect-
ively collect comparative datasets remains an open challenge.

Additionally, many of our current studies of comparative spe-
ciation—particularly those looking at pairwise divergence and 
those using comparative genomics—tend to focus on some-
what similar radiations. Popular systems for studying speciation 
include the Timema stick insects, Heliconius butterflies, and 
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cichlid fish, all of which are relatively young, species-rich radi-
ations consisting of parapatric or sympatric species exhibiting 
obvious ecomorphological differences. These aspects of these 
radiations make them excellent study systems. For example, 
because these lineages are young, we can capture the processes 
that initiate speciation. However, these same features might 
make these radiations outliers with respect to the rest of bio-
diversity. Some of the species in these radiations are probably 
ephemeral and  bound for extinction (Rosenblum et al. 2012, 
Dynesius and Jansson 2014, Meier et al. 2023). These young ra-
diations could thus bias our understanding of how speciation 
works, particularly if the factors that initiate speciation do not 
necessarily lead to persistence. Here, we see how speciation in 
Xantusia differs relative to these groups. Xantusia speciation ap-
pears to have occurred largely in physical and genetic isolation, 
with only rare occurrence of secondary sympatry. This contrasts 
with an emerging speciation model of frequent gene flow among 
interacting and often overlapping lineages (e.g. combinatorial 
speciation; Marques et al. 2019). Our work thus illustrates that 
considering a diversity of systems can help us understand the di-
versity of ways that speciation can occur. Thus, extending com-
parative approaches to the tree of life—not just recent, rapid 
radiations—is an opportunity for our field.

Finally, a benefit of comparative studies is that they allow 
us to integrate time and geography into studies of speciation. 
Speciation has an inherent spatial and temporal dimension, even 
if we typically can only study it from a few geographical loca-
tions and at a snapshot in time. However, all of the comparative 
approaches outlined here (Table 1) allow us to consider the ef-
fects of time, whether that is through its imprint on the histor-
ical demography of species (i.e. comparative phylogeography), 
through characterizing changing diversification dynamics (i.e. 
macroevolutionary studies), or through a deeper understanding 
of how patterns of divergence and RI change across lineage-
pairs of different ages (i.e. pairwise estimates of divergence). 
Similarly, studies of comparative phylogeography, geographical 
overlap, and speciation across geographical regions allow us to 
integrate geography into our studies of speciation. As seen in 
Xantusia, geographical isolation and time are crucial ingredients 
in precipitating speciation, and comparative studies afford us the 
opportunity to understand how these factors might function in 
other radiations.
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