
Berv et al., Sci. Adv. 10, eadp0114 (2024)     31 July 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

1 of 15

E V O L U T I O N A R Y  B I O L O G Y

Genome and life-history evolution link bird 
diversification to the end-Cretaceous mass extinction
Jacob S. Berv1,2,3*, Sonal Singhal4, Daniel J. Field5,6, Nathanael Walker-Hale7, Sean W. McHugh8,  
J. Ryan Shipley9, Eliot T. Miller10, Rebecca T. Kimball11, Edward L. Braun11, Alex Dornburg12,  
C. Tomomi Parins-Fukuchi13, Richard O. Prum14,15, Benjamin M. Winger1,3, Matt Friedman2,16, 
Stephen A. Smith1

Complex patterns of genome evolution associated with the end-Cretaceous [Cretaceous-Paleogene (K–Pg)] mass 
extinction limit our understanding of the early evolutionary history of modern birds. Here, we analyzed patterns 
of avian molecular evolution and identified distinct macroevolutionary regimes across exons, introns, untrans-
lated regions, and mitochondrial genomes. Bird clades originating near the K–Pg boundary exhibited numerous 
shifts in the mode of molecular evolution, suggesting a burst of genomic heterogeneity at this point in Earth’s 
history. These inferred shifts in substitution patterns were closely related to evolutionary shifts in developmental 
mode, adult body mass, and patterns of metabolic scaling. Our results suggest that the end-Cretaceous mass ex-
tinction triggered integrated patterns of evolution across avian genomes, physiology, and life history near the 
dawn of the modern bird radiation.

INTRODUCTION
Over 40 ago, Alvarez et al. (1) provided chemical evidence indicating 
that the Cretaceous-Paleogene (K–Pg) mass extinction was associat-
ed with an extraterrestrial impact. Subsequent research has refined 
our understanding of how this cataclysmic event influenced biodi-
versity [e.g., (2, 3)]. Mounting evidence suggests that the K–Pg ex-
tinction event triggered convergent patterns of life-history evolution. 
For example, some lineages may have experienced a transient “Lilli-
put effect” in which average body sizes became smaller, likely through 
faunal sorting, dwarfing, or miniaturization (4, 5). While great effort 
has been devoted to investigating extinction patterns among various 
groups across the K–Pg boundary [e.g., (6–8)], the impact of the 
end-Cretaceous mass extinction on the genomes of surviving lin-
eages has received less attention.

Given that life-history traits such as body mass, generation 
length, and metabolic rates are linked to different aspects of molecular 

evolution (9), it is plausible that convergent patterns of life-history 
evolution across extinction boundaries impart distinct signatures in 
the genomes of surviving lineages (10–12). For example, in plants, 
repeated evolution of polyploidy may be associated with the K–Pg 
transition (13). Similarly, increased avian substitution rates may re-
flect extinction-related size-selectivity (11, 12). Still, only a few stud-
ies have attempted to investigate how the aftermath of the K–Pg mass 
extinction shaped genome evolution [e.g., (11, 13–16)]. We generally 
expect life-history evolution to influence phylogenetic patterns [e.g., 
(17)] because factors like effective population size (Ne) and body 
mass are linked through environmental carrying capacity (18, 19). 
The phenomenon of GC-biased gene conversion also appears to have 
an important role in driving patterns of avian base composition (20, 
21), but this has never been directly linked to the K–Pg transition. 
Such a link might be expected, however, because of  the relation-
ships among life history, Ne, recombination, and the efficacy of gene 
conversion (21, 22).

Many studies attempting to connect events in Earth’s history to 
patterns of genome evolution rely on inferences from molecular 
clock analyses [e.g., (11, 13)]. These approaches can reveal heteroge-
neous patterns in the tempo of molecular evolution [e.g., (10, 23)] 
but typically assume that the underlying sequence data evolved ac-
cording to the expectations of a homogeneous nucleotide substitu-
tion model. If this assumption is violated, time-homogeneous models 
may obscure important evolutionary patterns [e.g., (17)]. Neverthe-
less, techniques that enable substitution models to vary across a 
clade’s evolutionary history have not yet seen widespread adoption in 
the macroevolution literature [e.g., (24–26)]. Detecting where one 
model has shifted to another on a phylogeny may provide evidence of 
evolutionary transitions in the “mode” or process that generated the 
observed data (23, 27–29). Thus, investigating patterns of model 
shifts across both genome and life-history traits may reveal unknown 
links among Earth’s history and evolutionary processes.

Here, we combine approaches from molecular systematics and 
phylogenetic comparative methods to investigate molecular model 
heterogeneity across the avian tree of life. We apply a novel step-
wise approach to estimating the phylogenetic position of shifts in 
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molecular substitution model parameters, implemented in Janus 
(Materials and Methods) (30). Our approach relaxes the assump-
tion that the sequence data–generating process has remained con-
stant through evolutionary time, enabling us to test the hypothesis 
that the radiation of birds near the end-Cretaceous extinction was 
accompanied by concurrent diversification in the mode of molecu-
lar evolution. Specifically, our phylogenomic analysis focused on 
evolutionary shifts in base composition, a well-established proxy of 
avian genome architecture (21, 30–32). After inferring molecular 
shifts, we applied a random forest machine learning classifier to sur-
vey the organismal traits associated with inferred shifts. We also 
applied multivariate Ornstein-Uhlenbeck (OU) models (27–29) 
to  investigate the hypothesis that molecular shifts co-occur with 
changes in the adaptive landscape or evolutionary allometries of key 
traits. We assessed aspects of breeding ecology, development, senes-
cence, and metabolism that may have undergone intense selection 
or relaxation of evolutionary constraints during the K–Pg transition 

[e.g., (10, 11, 33–35)]. Model shifts across many dimensions of bio-
diversity were constrained to clade originations temporally associ-
ated with the K–Pg transition, linking patterns of genomic variation 
to life history, physiology, and macroevolutionary patterns detected 
from the fossil record.

RESULTS
Molecular model shifts
Using a dataset spanning 198 avian lineages and 910 loci across cod-
ing and noncoding regions (Supplementary text), we inferred 17 mo-
lecular model shifts on 12 phylogenetic edges. Of these, 15 shifts 
were very close to the K–Pg boundary (Fig. 1 and figs. S1 and S7, A 
to D) (Materials and Methods) (36–39). Considering multiple shifts 
detected on the same edges, Janus inferred 13 phylogenetic regimes 
(one ancestral + 12 derived) are required to explain heterogeneity in 
sequence composition across exons, introns, untranslated regions 

Fig. 1. Inferred model shifts across phylogenomic and life-history data. Thirteen phylogenetic regimes encompassing 17 molecular model shifts were required to 
explain heterogeneity in equilibrium base frequencies across genetic data types (branches with distinct colors). Fifteen shifts were inferred at nodes with stem ages 
within ~5 Ma of the K–Pg boundary (39). (Top) The aggregate signal of molecular model shifts across nuclear and mitochondrial data types identified by Janus, mapped 
onto the MRL3 supertree, with the ancestral regime “0” in black [*Otidae = Otidimorphae + Strisores, (150)]. Patterns of molecular model shifts across phylogenetic edges 
are summarized as 2 × 2 grids (see legend above; figs. S3 and S7). Numeric labels at each grid position correspond to a molecular shift in a specific data type. Pie charts 
summarize the detection rate (“P”) for shifts in trait optima θ(t) across eight life-history traits relative to a simulated null false-positive (“FP”) rate {e.g., ℓ1ou detection rate 
/ [ℓ1ou detection rate + false-positive rate] (statistical precision), under AICc; see fig. S4A}. (Below) Estimated magnitude of shifts in equilibrium base frequencies relative 
to the empirical base frequencies for a given taxon partition for each data type, ordered by dataset size (Discussion and fig. S7, A to D). Edges with well-supported shifts 
in metabolic allometry are labeled with an asterisk, with the most substantial support observed for Coraciimorphae (pp = 98%, Fig. 3).
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(UTRs), and mitochondrial DNA (mtDNA), relative to the reference 
topology [“MRL3” in Kimball et al.​​​​ (39); Fig. 1]. We emphasize that 
Janus does not rely on information about the absolute timing of di-
vergence events (Materials and Methods); it is, therefore, notable that 
shifts cluster in close temporal proximity on a well-justified time-
calibrated phylogeny (Fig. 1 and fig. S1) (39). Extensive simulations 
(n = 9200) conditioned on the shape of the avian phylogeny show 
low false-positive and false-negative rates (Materials and Methods 
and fig. S9).

Inferred molecular shifts were largely concordant with the ori-
gins of diverse ancient clades previously recognized as ordinal or 
superordinal taxonomic ranks. These include Notopalaeognathae, 
Tinamiformes, the unnamed sister clade to Tinamiformes (in the 
MRL3 tree; Rheiformes, Casuariiformes, and Apterygiformes), Ne-
ognathae, Columbea, Passerea, Otidae [i.e., Otidimorphae + Stri-
sores, sensu (36)], the unnamed sister clade to Otidae (in the MRL3 
tree: other Neoaves), Aequornithes, Coraciimorphae, Psittaciformes, 
and Passeri [table S1; also see (12, 32) with respect to Passeri]. For 
every case, our approach inferred molecular shifts with 100% model 
weight when considering a shift’s existence and phylogenetic posi-
tion, indicating that shifts have a strong statistical signal. Inferred 
molecular shifts often fall on the GC-AT axis (Fig. 1 and fig. S7, A to 
D) of nucleotide compositional variation, with most shifts occurring 
in our large exon dataset, followed by introns, UTRs, and mtD-
NA. There was no trend relating dataset size to the magnitude of 
inferred substitution parameters (Fig.  1, bottom). Sequence type 
best explains the relative deviation between estimated equilibrium 
and empirical base frequencies (e.g., coding versus noncoding; Fig. 1 
and Discussion). We also find strong correspondence between a 
proxy of Ne and GC content across groups identified by Janus 
(fig. S8), similar to Weber et al. (21). These patterns appear robust to 
variation at individual codon positions in exons (Materials and 
Methods).

Life-history evolution
We applied a random forest machine learning approach to predict 
phylogenetic regimes inferred by Janus using a suite of candidate 
traits (Fig. 2 and Materials and Methods). Developmental mode (40), 
followed by adult body mass, were consistently the most impor-
tant traits [area under the receiver operating characteristic curve 
(AUC) = 0.94] associated with estimated molecular shifts. Traits re-
flecting substrate or dietary preferences were relatively unimportant, 
except for granivory, which ranked fourth after average clutch size 
(Fig. 2 and figs. S5 and S6). In parallel, we explored the hypothesis 
that molecular model shifts coincide with shifts in the evolutionary 
optima of life-history traits (Materials and Methods and Figs. 1 and 
2) using multi-optimum OU models (28). Under this framework, 
modeled optima [θ(t)] represent equilibrium points that a lineage’s 
traits evolve toward under the combined influence of stabilizing se-
lection and genetic drift. For OU models that considered molecular 
shift points as candidates for θ(t) shifts, model precision was consis-
tently high (Fig. 1 and fig. S4A): All molecular shift points were as-
sociated with optima shifts under alternative information criteria 
(e.g., 76.2 to 87.2%; see Supplementary text). Unconstrained analyses 
were also closely congruent with molecular shift points (Supplemen-
tary text and fig. S4B).

Molecular model shifts were broadly associated with θ(t) shifts 
toward increased altriciality at hatching or decreased adult body 
mass relative to θanc., the ancestral optimum (within Neoaves, 7 of 7 

and 6 of 7, respectively; Fig.  2). Aequornithes and Psittaciformes 
showed derived increases in body mass optima, along with derived 
shifts toward increased altriciality (Fig. 2, right) while also indicating 
an overall lower optimum than θanc. Outside Neoaves, developmen-
tal mode optima within Palaeognathae were not clearly associated 
with molecular model shifts. For body mass, however, θ(t) for Tin-
amiformes was similar to θanc., while its unnamed sister clade (Rhe-
iformes, Casuariiformes, and Apterygiformes) showed a marked 
increase in θ(t) relative to θanc. (Fig. 2). An alternative set of analyses 
estimating θ(t) separately for Struthio + root suggested all molecular 
shifts, including those within Palaeognathae, were associated with 
derived decreases in body mass or increases in altriciality (fig. S6 and 
Supplementary text).

Metabolic allometry
Across the Tree of Life, organism mass and metabolic rate broadly 
follow a three-fourth power scaling law [e.g., (41)]. We applied a 
Bayesian model of metabolic scaling [Materials and methods; (29)] 
and found that deviations from three-fourth scaling are associated 
with inferred molecular model shifts close to the K–Pg boundary. 
Modal estimates for slope (βmass) ranged from 0.65 (~⅔) to 0.84 
(~⅘) and intercept (β0) from −4.25 to −3.13 (Fig. 3 and table S1), 
similar to estimates for avian and mammalian subclades (42, 43). 
Compared to θ(t) for life-history traits like mass or developmental 
mode (Fig. 2 and figs. S5 and S6), metabolic scaling parameters have 
more uncertainty [e.g., Palaeognathae; Fig. 3 and fig. S10]. Modal 
posterior estimates (Fig. 3) indicate that the origins of K–Pg–associ-
ated subclades within Neoaves coincide with a shift toward overall 
lower body mass (Fig. 2 and figs. S5, S6, and S10), as well as lower 
slope and higher intercept terms [Fig. 3 and fig. S10; e.g., under 10 kg 
as noted in (42, 44)]. Derived shifts in metabolic scaling followed 
patterns we identified for body mass (Fig. 2 and fig. S10), with de-
creased mass leading to weaker metabolic scaling (29, 45). Seven 
edges detected at a 10% posterior probability cutoff reflect K–Pg–
associated clade originations (Fig.  3 and table  S1). Under a more 
conservative threshold, only three candidate edges were detected 
with moderate to strong support, including the unnamed sister 
clade of Otidae (pp ~ 38%), Columbea (pp ~ 39%), and Coraciimor-
phae (pp ~ 98%) (Fig. 1). Notably, the diverse clade Coraciimorphae 
was the only group for which molecular model shifts were detected 
across all nuclear genetic data types. Overall, metabolic parameter 
estimates were consistent with the hypothesis that allometric shifts 
in avian metabolism are associated with molecular model shifts near 
the K–Pg boundary.

DISCUSSION
Unraveling interactions among significant events in Earth’s history 
and macroevolutionary patterns is a fundamentally important yet 
persistently challenging goal in evolutionary biology. Here, we first 
investigated how the adaptive radiation of birds near the K–Pg bound-
ary is linked to patterns of molecular evolution. We show that tempo-
ral proximity to the K–Pg boundary increases the probability of 
molecular model shifts (Fig. 1 and fig. S1, A to D), linking a major 
mass extinction to macroevolutionary changes in the mode of avian 
genome evolution. By anchoring a series of phylogenetic comparative 
models with shifts in nucleotide composition, we then find evidence 
that shifts in genome evolution were likely concurrent with shifts in 
the evolutionary optima θ(t) of important avian life-history traits 
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(Fig. 2 and fig. S4, A and B), as well as shifts in metabolic allometric 
slope βmass and intercept β (Fig. 3). Broadly, our estimates of model 
shifts in genomic sequences coincided with shifts toward increased 
altriciality or smaller adult body mass, consistent with the hypothesis 
of a K–Pg–associated Lilliput effect [e.g., (4, 8, 11, 12)].

Our examination of metabolic allometry provides insights into 
the consequences of size evolution. Transitions toward smaller sizes 
are correlated with weaker scaling relationships between metabolic 

rate and body mass [e.g., along the Neoaves-Passerea topology; Fig. 3 
and fig.  S10; (11)]. This pattern implies that the energetic costs of 
evolutionary increases in size are reduced in clades with a smaller 
average body mass. In the aftermath of the K–Pg extinction, in which 
networks of ecological competition were reset, the survivorship of 
clades with smaller body sizes—and weaker associations between 
metabolic rate and body mass—may therefore have facilitated the 
evolution of variable physiological strategies in the early Cenozoic 

Fig. 2. Life-history traits associated with inferred molecular model shifts. (Left) Permutation-based variable importance for life-history traits (40, 59). With a random 
forest classifier, we identified variation in avian developmental mode [ChickPC1 in (41)] and adult body mass (a proxy of Ne) as closely associated with taxon partitions 
recognized by Janus in an analysis of exon data (Materials and Methods). (Right) Estimates of trait optima θ(t) constrained to molecular model shift points from nuclear 
genetic data (OUM model, 100 parametric bootstraps; colors and labels match; Fig. 1). Background distributions (light gray) indicate simulated trait values at the present 
(e.g., expected values under the fitted model; diagnostic of model adequacy). Vertical bars (right) mark phylogenetic groups within Neoaves temporally associated with the 
K–Pg extinction (12, 37, 39). Molecular model shifts are generally associated with shifts toward increased altriciality or decreased adult body mass (also see figs. S5 and S6).
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[e.g., (46, 47)]. This deduction is consistent with theoretical and em-
pirical advances that predict that transitions toward harsher environ-
ments with increased extrinsic mortality drive the evolution of lower 
slope values in metabolic scaling relationships (41). These phenom-
ena are associated with earlier maturation and faster growth (41), 
aligning with our inference of increased altriciality associated with 
the K–Pg extinction [e.g., (40, 48)].

Recognizing early bursts
Lineages can enter novel adaptive zones during diversification if eco-
logical, geographic, or phenotypic opportunities arise [e.g., (49, 50)]. 
The aftermath of mass extinctions, especially those of short duration, 
may present all three classes of opportunities, resulting in recovery 
faunas that experience “early bursts” of lineage and character diversi-
fication (51, 52). If diversification becomes constrained as niches fill 

[e.g., (53)], rates of morphological evolution and lineage accumula-
tion should decline, with the fastest rates of change restricted to a 
short interval following the mass extinction event (54, 55). Accord-
ingly, we expect initially high rates of evolution to generate outsized 
disparity (e.g., trait variance or heterogeneity) early in post-extinction 
adaptive radiations.

An exclusive focus on rates of change, however, [e.g., (56)] may 
obscure other kinds of early burst patterns [e.g., (57)]. Our approach 
diagnoses a “molecular early burst” in which disparate patterns of 
nucleotide sequence evolution arose within a relatively short interval 
near the K–Pg boundary. Conceptually, this approach is more similar 
to paleontological approaches [e.g., (57, 58)] than it is to techniques 
that estimate rates of change in quantitative or molecular charac-
ters [e.g., (11, 56)]. While many studies have quantified early bursts 
through patterns of morphological evolution or rates of lineage 

Fig. 3. Inferred molecular model shifts are associated with a range of avian metabolic allometries. We analyzed metabolic data under a Bayesian framework to 
generate posterior estimates of intercept (β0) and slope (βmass) coefficients from an evolutionary allometric regression model. Here, we depict the posterior estimates for 
slope and intercept across a fixed allometric shift model recapitulating molecular model regimes across all data types (single branch internodes reflecting Passerea and 
Notopalaeognathae not shown; see table S1 and fig. S10). Modal parameter estimates are indicated with white dots. Horizontal dashed lines indicate the prior mean; 
dotted lines indicate the range of modal parameter estimates. On the right axis, we show 95% (for slope) and 50% (for intercept) prior density intervals. Our results show 
that a shift toward a lower slope and higher intercept characterizes lineages originating near the end-Cretaceous transition (e.g., Passerea).
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diversification, we show that ancient diversification events may im-
part a signature of increased genomic disparity that remains detect-
able in surviving lineages for tens of millions of years. In this context, 
the molecular model shifts we infer may represent “genomic fossils” 
associated with canalized macroevolutionary regimes.

A novel dimension of avian adaptive radiation
Our inference of numerous model shifts within an ~5 Ma interval of 
the K–Pg boundary (Fig. 1) supports an “early burst” mechanism in 
which ecological and lineage disparity accumulated rapidly in the 
early history of crown birds. Given that the uncertainty in estimated 
molecular divergence times typically exceeds 5 Ma (11, 36–39), a 
conservative interpretation of available divergence time estimates 
does not reject the hypothesis that these events were closely linked 
(Fig. 1 and fig. S1).

Consistent with this pattern, models of quantitative trait evolu-
tion estimate short phylogenetic half-lives [(t1/2 =  ln(2)/α, e.g., t1/2 
body mass ~0.18 (0.17 to 0.52) Ma; Fig. 2]. Such short intervals imply 
rapid character change followed by a relatively stationary process [a 
median generation length of 3 years (59) suggests a t1/2 of ~60,000 
generations]. This interpretation is consistent with our current un-
derstanding of the avian fossil record, which indicates only limited 
crown bird diversification in the Late Cretaceous [e.g., (10, 11, 38)]. 
Our results, therefore, support the hypothesis that developmental 
and life-history traits were canalized early in crown bird evolutionary 
history (60), partitioning higher-taxa into distinct types [e.g., (57, 61, 
62)]. Considering the association between inferred molecular model 
shifts and shifts in the evolutionary optima of life-history traits (e.g., 
fig.  S4, A and B), both patterns indicate integrated evolutionary 
changes [e.g., (57)] to the post-Cretaceous adaptive landscape and 
permanent shifts to new adaptive zones arising in the early Cenozoic 
[e.g., (50)].

While many mechanisms link substitution rates to the life-history 
spectrum (9), we have less intuition about how the mode of molecu-
lar evolution may relate to life-history variation. One idea proposed 
to explain variation in DNA compositional heterogeneity links the 
recombination process of GC-biased gene conversion to generation 
length, Ne, and covarying life-history traits [e.g., (21, 22, 30, 63, 64)]. 
Post-Cretaceous increases in Ne (12, 14) and decreased generation 
lengths (11) may, therefore, contribute to the patterns we observe, as 
higher Ne is predicted to increase the efficacy of GC-biased gene con-
version (fig. S8) (21). Further, most inferred substitution model shifts 
occur in exon data, a pattern consistent with the hypothesis that tran-
scriptionally active regions with elevated rates of recombination may 
be more subject to GC-biased gene conversion. Birds lack the DNA 
binding protein PRDM9, which, in mammals, directs recombination 
away from transcriptionally active regions (65). Thus, our observa-
tion that coding regions show greater deviations between estimated 
equilibrium and empirical base frequencies could be influenced by 
model fit related to functional constraints, codon usage bias, recom-
bination, or selection (see supplementary analysis of codon usage; 
figs. S2 and S7, A to D).

Notably, our study suggests model heterogeneity as a mechanism 
to explain the “data type” effect (12, 36, 66–68), in which phylogenetic 
analyses of coding or noncoding sequence data recover conflicting 
signals of avian phylogeny. A recent analysis of whole genomes (12) 
did not recover several clades on which we detect shifts in base 
frequencies (e.g., Columbea and Passerea), suggesting that model 
heterogeneity may have important consequences for phylogenetic 

topology inference. We also expect that, in cases where homogeneous 
models are used, shifts in substitution parameters could lead to biased 
estimates of branch lengths, potentially contributing to older esti-
mates of divergence dates inconsistent with the fossil record [e.g., (10, 
11)]. Nevertheless, our results support recent inferences (12, 66, 67) 
that noncoding introns or intergenic regions may be preferable for 
inferring avian phylogeny because exons exhibit more heterogeneous 
evolutionary dynamics.

In conclusion, although high-throughput sequencing has clarified 
the evolutionary history of many vertebrate clades, the early diversifi-
cation history of crown birds—a group comprising more than 10,000 
extant species—continues to provoke debate. Here, we used nonho-
mogeneous models of sequence evolution to investigate how the diver-
sification of modern birds was marked by shifts across many axes of 
natural variation. Our results suggest that directional selection on key 
parameters across the end-Cretaceous mass extinction event—favor-
ing traits such as increased altriciality or reduced adult body mass—
may have shifted patterns of genome evolution through their linkages 
with population-level and demographic processes. Overall, our find-
ings support the hypothesis that one of the most significant events in 
the history of life on Earth–the Chicxulub bolide impact and its associ-
ated mass extinction at the end of the Cretaceous Period–catalyzed an 
integrated evolutionary response within surviving lineages, ultimately 
giving rise to the spectacular diversity of living birds.

MATERIALS AND METHODS
Nuclear sequence data collection and processing
We reassembled an existing short-read sequence targeting 394 gene 
regions across 198 bird species and two crocodilian outgroups from 
Prum et  al. (37). These data were initially collected using target-
capture of anchored hybrid enrichment loci (69), a set of single-copy 
regions semiconserved across vertebrates. We analyzed the existing 
raw sequencing reads with a common pipeline designed to extract 
phased exons. First, we removed low-quality regions and adaptor 
sequences using Trimmomatic v0.36 (70) and merged overlapping 
reads using FLASH v1.2.11 (71). We assembled reads for each sam-
ple using Trinity v2.11 (72). We then annotated assemblies by com-
paring assembled contigs to target loci using blat v36x2 (73). To 
ensure that we annotated orthologs, we retained only contigs with a 
reciprocal best-hit match to a target locus. To identify intron-exon 
boundaries, we used exonerate 2.4.0 to compare the nucleotide se-
quences of annotated loci to the protein sequences for the exons of 
each locus based on protein-coding data and annotations from the 
zebra finch (Taeniopygia guttata, genome assembly bTaeGut1_v1). 
This approach assumes that intron-exon boundaries are conserved 
across the avian radiation. Occasionally, mapping of the exon se-
quence to the nucleotide sequence was discontinuous, suggesting 
the presence of an intervening noncoding region. In such cases, we 
retained the highest-scoring contiguous stretch of sequence only.

To identify variable sites, we mapped cleaned reads back to an-
notated contigs using bwa v0.7.17-r1188 (74) and used GATK v4.1.8 
to mark duplicates (75). We called variants on this alignment using 
GATK HaplotypeCaller and filtered it to only retain variants with 
coverage >20× and quality >20. Using this high-quality variant set, 
we recalibrated the base quality scores in the alignment files using 
GATK. We then called the variants and phased them using Haplot-
ypeCaller. Last, we exported diplotypes and phased haplotypes per 
intron and exon in a coding region, masking any sites with coverage 
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<2×. Ultimately, we captured 453 exons, 573 introns, and 213 UTRs. 
Before alignment, we applied a series of sequential filtering steps to 
remove the remaining short or low-quality fragments. We removed 
(i) leading and trailing N characters from each fragment and the re-
sulting sequences that were zero length (see locus-filtering.R script), 
(ii) fragments with >40% N characters, (iii) fragments that were <50–
base pair (bp) long, and (iv) whole loci that lacked coverage for at 
least 10% of the taxa in the dataset.

We aligned phased exon sequences with the Multiple Alignment 
of Coding Sequences (MACSE) ALigning, Filtering, and eXporting 
pipeline (ALFIX) (76). MACSE-ALFIX chains together several pro-
grams that perform reading frame aware alignment with MACSE and 
subsequent alignment filtering with HmmCleaner (77) to remove 
nonhomologous sequence fragments. We aligned phased noncoding 
sequences with Fast Statistical Alignment (FSA) (78). We calculated 
alignment statistics using AMAS (79). We used trimAl (80) to evalu-
ate the effect of 5 to 30% alignment column occupancy filtering on 
alignment length and the loss of parsimony informative sites. We ulti-
mately filtered our noncoding alignments to require a minimum col-
umn occupancy of 5% (i.e., 95% of the sequences in an alignment are 
allowed to contain a gap for a given site). This procedure, which we 
believe is conservative, increased the signal-to-noise ratio in these 
data by removing stretches of unaligned nucleotides (characteristic of 
FSA alignments) while retaining most of the informative data (81, 
82). Unfiltered alignments and the final filtered dataset are provided 
as Supplementary Data.

Mitochondrial sequence data collection and processing
We ran Mitofinder 1.4 (83) to identify the mitochondrial regions from 
the previously assembled contigs. For reference mitogenomes, we 
used complete mitogenomes available in GenBank (table S3). When 
available, we used a reference from the same order [although for Pas-
seriformes, we used different references for oscines (Passeri) and sub-
oscines (Tyranni)]; in a few cases, it was necessary to use a reference 
from a closely related order (table  S3). We then extracted the 13 
protein-coding genes and 2 ribosomal RNAs (rRNAs) from the mito-
finder output (final_genes.fasta file). In some cases, limited mito-
chondrial data were recovered (table S3). In those cases, we searched 
GenBank for the same or a phylogenetically equivalent species that 
could be substituted. When no suitable alternative was available from 
GenBank, we also used mitogenomes assembled from the raw data 
collected as part of other studies (84–88). To increase data coverage in 
five cases, we generated chimeric sequences using available GenBank 
data from multiple individuals of the same species (table S3).

Once a set of sequences had been assembled, we performed an 
initial analysis using these data, combined with a larger set of mitoge-
nomes to ensure sequences were correctly identified (placed phylo-
genetically with expected relatives) and did not exhibit unusually 
long-branch lengths, which might suggest assembly errors. To do 
this, we ran an initial alignment using MAFFT 7.294b (89) using de-
fault parameters. This alignment was then analyzed in IQ-TREE 
2.1.2 (90) using the GTR + I + G4 substitution model with 1000 ul-
trafast bootstrap replicates (91). Last, we regenerated alignments for 
the present study using the same procedure described above for nu-
clear coding and noncoding data.

Phylogenetic frameworks
To avoid issues of circularity related to inferring molecular patterns 
and phylogenetic topology from the same molecular dataset and to 

control for stochastic resolutions of Neoaves [e.g., (92)], our focal 
analyses use the MRL3 supertree [“MRL_3backbone”] (39) as a topo-
logical constraint. This topology balances the signal of phylogeny 
among several recently published avian genomics datasets and re-
solves the seven major higher-level clades identified by Reddy et al. 
(66), as well as the most robustly supported intraordinal clades (12, 
37). It is also in line with a growing number of studies that have sug-
gested that early diversification events within the avian crown group 
were associated with the K–Pg boundary (12, 36–39). As inference of 
avian phylogeny is an active area of research (67), we explored how 
patterns of gene-tree discordance [e.g., (36)] may confound infer-
ence of molecular model shifts or potential statistical associations 
with the K–Pg boundary (Supplementary text and fig. S1B).

Substitution model shift analysis with Janus takes a rooted input 
phylogram with branch lengths in substitution units [details below; 
(30)]. To generate starting trees for Janus, we used our reprocessed 
datasets and estimated maximum likelihood branch lengths with IQ-
TREE v 2.1.1 (90, 93). For each data type, we applied an optimal parti-
tion model selected with the MFP+MERGE approach in IQ-TREE 
(94, 95), with each locus defined as the unit for partitioning. We esti-
mated molecular branch lengths separately for exons, introns, UTRs, 
and mtDNA, but kept the topology fixed across datasets.

The Janus algorithm fits models that describe patterns of substitu-
tions irrespective of the absolute timing of divergence events (below). 
Therefore, temporal patterns must be evaluated on a reference time-
line. To interpret our model-shift results on a time-calibrated phylog-
eny, we used congruification (96) with treePL (97) to apply the 
divergence date estimates from the reduced taxon set analysis pre-
sented in (39) to the phylogenetic branch length estimates derived 
from the present study. The well-constrained divergence estimates 
from (39) are broadly congruent with those reported across several 
phylogenomic analyses of independent datasets (12, 36–38). These 
estimates reject the hypothesis that many modern avian clades origi-
nated in the Cretaceous and center the diversification of most super-
ordinal variation within ~±5 Ma of the K–Pg boundary (Fig.  1). 
Therefore, our interpretations are conditional on this general diver-
gence time scenario, an area of active research [e.g., (10, 11, 38)] (see 
Discussion).

Fitting time-heterogeneous models to avian 
phylogenomic data
For nuclear genomic data, we considered the signal across three con-
catenated datasets (exons, introns, and UTRs). For mitochondrial 
data, we considered three alternative datasets (all data combined, 
protein-coding genes combined, and rRNAs combined). Our focus 
on data type mirrors recent developments implicating this axis of ge-
nomic variation as a primary source of phylogenetic incongruence 
(12, 36, 66, 67). We fit time-heterogenous substitution models to 
each dataset using Janus (commit 8952e31d, https://git.sr.ht/~hms/
janus). Although Janus can search for shifts in base frequencies as 
well as the substitution rate matrix, initial explorations of our data 
indicated that shifts in the substitution rate matrix were negligible, 
suggesting that the primary axes of model heterogeneity in these data 
are related to base frequencies. Enabling a free rate matrix also dra-
matically increased the number of parameters and computing time. 
As a result, we only considered shifts in base frequencies for subse-
quent analyses.

We set each search to accommodate rate heterogeneity across 
sites according to a discretized gamma distribution (-g) and to assess 
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model weights for the existence (-u) and location (-l) of model shifts. 
Simulations indicate that this combination of parameter options has 
high power (e.g., a negligible false-positive rate) to detect the phylo-
genetic position of molecular model shifts [details below; (30)]. Con-
sidering our genetic dataset’s taxonomic sample, we set the minimum 
clade size to >| = 4 (-m 4). Thus, the set of possible shift configura-
tions reflects 101 internal nodes spanning ~77 Ma [square markers in 
Fig. 1; e.g., with postorder traversal, any node (excluding the root) 
with >| = 4 descendant edges].

Implementation of Janus and the greedy search algorithm
Janus has been implemented in both Golang and C, and the source 
code is available at https://git.sr.ht/~hms/janus and https://git.
sr.ht/~hms/hringhorni. The algorithm to detect shifts in stationary 
frequencies follows a stepwise procedure similar to Alfaro et al. (98) 
and Mitov et al. (99) and requires a rooted tree and matching align-
ment as input: 1) estimate a maximum likelihood root composition; 
2) traverse the tree in postorder fashion (i.e., from the tips to the root) 
and estimate maximum likelihood compositions for subtrees with a 
minimum number of tips specified by the user; 3) take the subtree 
composition and the root composition for the remainder of the tree 
and estimate a likelihood and then a Bayesian Information Criterion 
(BIC) score (100); 4) order these compositional shift models for every 
eligible subtree by BIC; 5) initiate the final model configuration with 
the root model; then, in a greedy manner, add a shift to the root mod-
el based on the previously ordered subtrees, estimate a new BIC, and 
add the submodel to the set of models if the new BIC is lower; and 6) 
discard a submodel if the updated BIC score is increased. Then, using 
two approaches, we assess the relative support for shifts both with re-
spect to a shift’s existence and its location. First, we assess shift exis-
tence (-u flag) by evaluating BIC weights for alternative models that 
include or exclude each proposed shift. Next, we assess the location of 
proposed shifts (-l flag) by estimating the BIC weights of a proposed 
shift at the focal node and its two daughters.

Statistical performance of Janus
Other work by the authors showcases a range of simulated conditions 
under which we evaluate Janus’s performance (30). We previously ob-
served that Janus is conservative, with negligible false-positive rates 
after removing poorly supported shifts under the BIC (i.e., with the 
“-u” and “-l” flags). When configured to estimate uncertainty, Janus is 
also robust to phylogenetic inference error (30). Simulations in the 
noted companion paper find a slightly higher rate of false negatives 
(0.03 to 0.05) for datasets up to 1000 bp and 250 tips (30). Thus, previ-
ous simulations showed that the false negative rate is low for shifts 
positioned randomly across simulated trees and datasets (30).

While our previous study showed acceptable false-positive and 
-negative rates for random trees simulated under a constant birth-
death process (30), here, we evaluate performance with respect to the 
avian phylogeny. Specifically, the molecular phylogeny of Aves is char-
acterized by an overall rapid and early pattern of speciation, in which 
many super-ordinal clades simultaneously experience early bursts of 
lineage accumulation (12, 36–38). Our simulations are designed to 
assess how an extinction-driven bottleneck, followed by rapid clado-
genesis, might affect the inference of molecular model shifts with Ja-
nus. To accomplish this, we developed a comprehensive approach 
starting with the phylogenetic frameworks used in this study: phylo-
grams that reflect the variation in relative and total branch lengths 
across exon, intron, UTR, and mtDNA datasets. A complete pipeline 

(in R) for reproducing similar simulations with arbitrary topologies is 
provided as supplementary material, which will be helpful for other 
researchers undertaking similar studies. We suggest that users of Ja-
nus may use this pipeline to evaluate the performance of the method 
for their data.

Considering the focal phylograms, we first developed several 
strategies for sampling nodes to simulate nonhomogeneous substitu-
tion models. We assess three general scenarios: 1) no shifts, 2) phylo-
genetically independent shifts, and 3) nested shifts. The latter two 
scenarios are simulated according to five main parameters in a func-
tion we provide called annotate_branches (in shift_model_sims.R): a 
minimum clade size, a maximum clade size, the total number of 
shifts, a buffer constraint that maintains a minimum phylogenetic 
distance between selected nodes, and whether shifts should be nested 
or independent. For nested shifts (nested  = T), the process starts 
with randomly sampling an initial node from a pool defined by min-
imum clade size. Subsequent samples are made from a pool of this 
node’s descendants and ancestors. Each sampled node must be a 
specified minimum number of steps away from any previously sam-
pled node in terms of the number of branch paths (“buffer”). If no 
suitable nodes are found, the process restarts with a new initial node, 
repeating until the requirements are satisfied. For independent shifts 
(nested = F), once an initial node is selected, its lineage (descendants 
and ancestors) is excluded from future selections. This is repeated for 
a specified number of shifts, generating phylogenetically indepen-
dent configurations.

The pipeline (for nested or independent shifts) starts by sampling 
eligible nodes based on a specified minimum clade size. In our case, 
we specify a minimum clade size of four (as in analyses of empirical 
data) and a maximum clade size set to ~3/4 of the total number of tips 
(~150). We also set a buffer of two. For nested shifts, this buffer setting 
means that sampled nodes are separated by at least one intermediate 
node. For independent shifts, sister clades (separated by two paths) or 
those more distantly related can be sampled. This set of parameters is 
very conservative in that it enables the pipeline to sample from a wide 
array of potential model parameters and shift configurations. How-
ever, our pipeline is flexible and allows a user to easily specify a more 
restrictive sample space if desired.

We evaluated scenarios of up to four phylogenetically indepen-
dent shifts (i.e., up to five models, including the root model). In the 
case of nested shifts, we evaluated cases of two nested shifts (i.e., 
three models, including the root model). After our pipeline samples 
a configuration of shift nodes, they are annotated with strings of 
user-specified model definitions. We defined HKY models with the 
transition: transversion rate set to 2:1, base frequencies randomly 
sampled from a uniform Dirichlet distribution for each model re-
gime (and starting root condition), and uniform site-rate patterns. 
For each data type (exon, intron, UTR, mtDNA) and configuration 
scenario (none, nested, or independent), we repeated the entire node 
selection process 100 times.

The outputs from our pipeline are annotated Newick strings that 
describe evolutionary patterns of nonhomogeneous model parame-
ters. These strings are formatted to be parsed by the AliSim program 
(101) in IQ-Tree 2.2.2.6 (90) to generate simulated sequence align-
ments of a specified length. We used this approach to simulate align-
ments of 2 to 50 kbp (in the case of independent shifts or no shifts) 
and 2 to 100 kbp (in the case of nested shifts). In total, we generated 
9200 simulated alignments to assess the performance of our approach 
with respect to variation in the shape of the Avian phylogeny induced 
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by analyses of different genetic data types and shift configuration sce-
narios. We analyzed these simulated sequence alignments with Janus, 
as specified for our primary analyses; however, we omitted the -u and 
-l steps (for post-analysis uncertainty estimation) as well as the esti-
mation of site-rate heterogeneity (-g, which we do not simulate) to 
speed up computation. These analyses required ~2 months of time 
distributed across ~450 AMD Threadripper CPU threads.

We estimated the average false-positive (e.g., recovery of a non-
simulated shift) and false-negative (e.g., failure to recover a simulated 
shift) rates for each data type (exon, intron, UTR, mtDNA) and con-
figuration scenario. Then, we computed one-sample t and Z tests and 
P values [adjusted to control for the false discovery rate due to multi-
ple tests (102)] reflecting the null hypothesis that a given average 
false-positive or -negative rate is not greater than zero for a given 
alignment length, data type, and shift configuration (nested or inde-
pendent). These simulations encompass a wide array of model shift 
scenarios and are, therefore, intended to provide useful baseline ex-
pectations of our model and algorithm performance. Our results are 
reported as Supplementary text (fig. S9, A to F).

Assessing the coincidence of substitution model shifts with 
the K–Pg boundary
Although we detected that only a small proportion of assessed nodes 
exhibit substitution model shifts (~10%), most of these are detected 
on nodes for which the K–Pg boundary is included within recently 
estimated ranges of divergence date uncertainty (36–38). In the pres-
ent case, this is almost exclusively <5 to 10 Ma relative to the K–Pg 
boundary in the MRL3 supertree (Fig. 1 and fig. S1, A and B). To as-
sess this hypothesis quantitatively, we modeled the Bernoulli proba-
bility of a model shift as a function of time distance to the K–Pg 
boundary, considering potential confounding effects of phylogenetic 
nonindependence, tree shape, and phylogenomic discordance.

We coded a binary dependent variable representing the presence 
or absence of a novel macroevolutionary regime identified by mo-
lecular model shifts and assigned 1/0 to each node using the proce-
dure described below. This strategy is conservative, as multiple shifts 
in distinct genetic data types can occur along a single edge (e.g., our 
approach models the minimum number of implied macroevolution-
ary regimes). We then coded the time distance to the boundary as an 
independent variable, defined as the stem age for a given focal node 
minus 66 Ma (testing indicated a negligible impact of using stem or 
crown ages). These values were log-transformed after taking their ab-
solute values, which defines our investigation in terms of proportion-
al proximity to the K–Pg boundary. We fit models of this type with 
the maximum likelihood “phyloglm” approach in the phylolm R 
package (103–105) and compared models using the helper functions 
available at https://github.com/mrhelmus/phylogeny_manipulation. 
We additionally estimated 1000 bootstrap replicates for each data 
type to assess the uncertainty around model parameters.

Typically, phylogenetic regressions are applied to datasets associ-
ated with contemporary tips on a phylogeny. In our case, we assessed 
the probability of regime shifts tagged to internal nodes on the phy-
logeny (e.g., the presence or absence of a model shift in any data type). 
Because phylogenetic regression techniques use a variance-covariance 
(VCV) matrix describing shared path lengths proportional to the 
phylogenetic covariances of trait values (106), these methods are valid 
for phylogenies with noncontemporaneous tips. We apply this logic 
and assign molecular model shifts as binary states characterizing 
negligible-length terminals grafted to each internal node. With this 

“trick,” we can extend phylogenetic regression techniques to evaluate 
properties or states measured for internal nodes (107). Our overall 
regression strategy, therefore, relies on a modified phylogeny that in-
cludes 197 noncontemporaneous, negligible-length terminals grafted 
to each internal node (Supplementary R code).

Last, we investigated whether or not patterns of phylogenomic 
conflict hypothesized to be associated with the K–Pg boundary [e.g., 
(36, 108)] could confound statistical associations between the prob-
ability of a novel molecular model regime and the time distance to 
the K–Pg boundary. This consideration serves two purposes: 1) We 
sought to understand how the detection of a molecular model shift 
may be related to potentially covarying patterns of phylogenomic 
discordance, which we also expect to be somewhat correlated with 
proximity to the K–Pg boundary (108), and 2) we sought to account 
for the fact that branch lengths estimated from concatenated datasets 
can contain artifacts derived from model-misspecification related to 
gene-tree/species tree discordance [e.g., (109)]. To address these pos-
sibilities, we quantified patterns of phylogenomic discordance across 
each data type and included a metric of discordance as an additional 
covariate in logistic regression models. We processed each gene tree 
(910 separate loci) to collapse nodes with less than 95% ultrafast-
bootstrap support (110). We then coded each node’s percentage of 
discordant gene trees relative to the fixed MRL3 topology for each 
data type (Supplementary R Code). We applied a variance-stabilizing 
transformation by taking the arcsine-square root of the percentage 
discordance values; this transformation recognizes the biological 
limits on the concept of discordance while spreading out the weight 
of extreme values. Last, we excluded extant terminals when running 
logistic regression models because discordance cannot be measured 
for these edges. We then compared the results from alternative mod-
els considering different levels of phylogenomic discordance as a co-
variate (fig. S1, A to D). We depict alternative analyses considering 
low (mean–1 SD), mean, and high (mean  +  1 SD) levels of dis-
cordance.

Functional dimensions of sequence variation
Estimates of the optimal configuration of molecular model shifts sug-
gested equilibrium base frequencies differed substantially across the 
identified regimes in each data type (Fig. 1 and fig. S7, A to D). Al-
though our dataset was not originally conceived to examine function-
al characteristics of the genome (37), our new assembly and annotation 
into distinct data types (exons, introns, UTRs, and mtDNAs) presented 
us with the opportunity to perform a preliminary assessment of func-
tional variation. As noted in Smith et al. (30), compositional shifts 
may result from nondemographic processes such as selection on co-
don usage for translation accuracy or even gene expression [e.g., (111, 
112)]. Therefore, we estimated nucleotide-based metrics to quantify 
the degree of codon usage bias. Further, as we generated phased hap-
lotype data, we explored whether patterns of allelic variation in this 
dataset might be related to compositional shifts at the macroevolu-
tionary scale.

For nuclear coding sequences, we evaluated three metrics of codon 
usage bias: synonymous codon usage order (SCUO) (113), effective 
number of codons (c) (114), and a modified version of effective 
number of codons, or ′c (115). SCUO measures the nonrandomness 
in synonymous codon usage and ranges from 0 (totally random) to 1 
(totally biased) and is derived from Shannon information theory 
(116). c measures the effective number of codons and ranges from 20 
(one codon per AA) to 61 (alternative synonymous codons equally 
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likely). ′c additionally accounts for variation in background nucleo-
tide composition. We, therefore, expected ′c to be the least sensitive 
to variation in patterns of synonymous codon usage concerning bi-
partitions identified partly on the basis of compositional variation. 
We also assessed nucleotide diversity π, as approximated by the sum of 
the branch lengths separating phased alleles. As with life-history 
traits, we log-transformed metrics of codon bias before comparative 
phylogenetic analysis. We estimated whether or not variation in these 
statistics was different across taxon partitions identified by Janus, us-
ing phylogenetic analysis of variance (ANOVA) assuming a Brownian 
model of trait evolution (117, 118), with 10,000 simulations (119) to 
assess significance (fig. S2). Lastly, we checked to see how GC content 
variation at individual codon positions may contribute to macroevo-
lutionary regimes identified by Janus in the analysis of the whole exon 
dataset. Taking a similar approach as above, we estimated whether or 
not variation in  GC content was different across taxon partitions 
identified by Janus using phylogenetic ANOVA assuming a Brownian 
model of trait evolution (117, 118), with 10,000 simulations (119) to 
assess significance. These supporting analyses are reported in the Sup-
plementary text.

Life-history and metabolism datasets
To assess how the configuration of molecular model shifts detected 
with Janus may be related to life-history variation, we considered 
how life history varies across numerous dimensions [e.g., (11, 120)]. 
We assembled two life-history datasets to minimize the amount of 
missing data in each downstream analysis. The first dataset focused 
on quantitative life-history traits and was compiled from Bird et al. 
(59). These data include body mass; modeled generation length; lati-
tude centroid; mean clutch size; annual adult survival; age at first 
breeding; maximum longevity; and categorically coded variables for 
diet, habitat, diurnality, and migratory status. We also included a 
metric of avian developmental mode (“ChickPC1”) that describes 
variation in hatchling state along an altricial to precocial spectrum 
(40). These data reflect exact species matches relative to those in the 
reassembled nuclear genetic dataset.

The second dataset reflects energetic constraints on life-history 
variation and includes basal metabolic rates (BMR) expressed in watts 
and associated body masses. Metabolic rates broadly scale as a ~3/4 
power law function of organism mass and reflect rates of energy flow 
in and through organisms (41, 121–124). Uyeda et al. (29) previously 
considered the hypothesis that allometric scaling parameters relating 
BMR and body mass have evolved across the vertebrate tree of life. We 
apply the same general approach to our sample of avian metabolic 
diversity (below). We first collected available BMR records from the 
AnAge senescence database Build 14 (125). For most of the exact spe-
cies in the present dataset (and most avian species in general), conspe-
cific BMR data have not been measured. Therefore, we conducted an 
extensive literature search for each avian family in the molecular data-
set and filled in many missing entries by identifying phylogenetically 
equivalent matches (e.g., at the genus level) for which BMR and mass 
data were available.

Several downstream analyses required complete datasets, so we 
used two methods to generate unbiased estimates of missing values 
under a multivariate Brownian motion process (mvBM). In the case 
of the larger eight-dimensional breeding ecology dataset, we used 
Rphylopars (126) to fit a VCV matrix and to estimate values for miss-
ing entries. In the case of the two-dimensional metabolic scaling data-
set, we used mvMORPH (127) to compare the fit of alternative 

multi-regime, mvBM models based on the model shift points identi-
fied by Janus. In the latter case, the values of the imputed data were 
virtually identical across alternative models (e.g., R2 > 0.98), so we 
selected the model with the lowest Akaike information criterion 
(AIC) score to use for downstream analyses.

Analysis of life-history data
Using multiple approaches, we investigated the degree to which pat-
terns of life-history variation reflect distinct evolutionary regimes 
that coincide with molecular model shifts. Several methods have 
been developed to automatically generate evolutionary hypotheses 
by identifying an optimized configuration of evolutionary models 
describing variation in the process of trait evolution [e.g., (99, 128)], 
but few are expressly multivariate [e.g., (28, 129)]. We investigated 
model heterogeneity across our high-dimensional life-history datas-
et with the bootstrapping approach implemented in the software 
ℓ1ou (28). ℓ1ou uses a phylogenetic lasso method to identify points 
on a phylogeny where a trait’s optimum value θ(t) has shifted, assum-
ing α (the “pull” toward the optimum or adaptation rate) and σ2 (the 
Brownian diffusion rate parameter) are fixed across the tree. The 
ℓ1ou approach is extended to multiple traits by assuming that traits 
shift their optimum simultaneously and in the same location on the 
tree (28).

Conveniently, ℓ1ou allows the researcher to specify a set of candi-
date edges for the lasso approach to consider for shifts in θ(t). This 
attribute allows us to articulate the specific models we want to com-
pare. We ran ℓ1ou with a constrained set of candidate edges reflecting 
the 12 candidate shift edges identified across analyses of different mo-
lecular data types (Fig. 1 and table S1). Thus, for a given ℓ1ou analysis 
of this type, ℓ1ou can infer 0 to 12 shifts in θ(t). We repeated this pro-
cedure with the AICc and pBIC information criteria, as recommend-
ed by Khabbazian et  al. (28), and used 100 bootstrap replicates to 
assess the positive detection rate for each candidate edge. In these 
analyses, our intention is not to identify every case where a life-history 
shift may have occurred across avian phylogeny; our goal is to assess 
how much statistical support exists for shifts in life-history trait opti-
ma that coincide with shifts identified in our analysis of molecular 
data. We validated these results by comparing them to a null distribu-
tion of shift detections reflecting the false-positive rate under multi-
variate Brownian motion [e.g., without shifts in θ(t)]. Using the 
eight-dimensional VCV matrix estimated by RPhylopars (126), we 
simulated 500 null datasets using the function simRatematrix in the R 
package ratematrix (130). We then analyzed each simulated dataset 
with ℓ1ou as previously specified. For each candidate edge, we used 
Fisher’s exact test (131) to assess whether the frequency of positive 
shift detections in the empirical dataset was significantly greater (one-
tailed P value = 0.05) than the null false-positive rate observed across 
simulated datasets. Tables of P values and odds ratios are reported as 
Supplementary material (fig. S4A and table S2). Last, we investigated 
which life-history traits were most closely associated with molecular 
model shifts using a machine-learning approach implemented in the 
tidymodels framework (below) (132).

We performed additional, unconstrained analyses with ℓ1ou to 
evaluate how well the ℓ1ou framework detected shifts in θ(t) that cor-
respond with those identified by Janus. Taking our eight-dimensional 
dataset, we ran ℓ1ou under default search parameters with three avail-
able information criteria (AICc, BIC, and pBIC). These additional 
tests were set to consider the same candidate nodes in analyses of mo-
lecular data (i.e., all edges with ≥4 descendant lineages). We visually 
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assessed the temporal sequence of resultant ℓ1ou shifts with two ap-
proaches. First, we visualized the relative density of ℓ1ou shifts through 
time, using the generic Kernel density estimator built into R (133), to 
examine whether ℓ1ou detected any shifts far from the K–Pg bound-
ary. Next, we wrote new R functions to identify which set of reference 
shifts (identified by ℓ1ou) was closest to a given target shift (identified 
by Janus) and to return their path distance (in nodes). Taking these 
path distances as discrete data for each target shift (i.e., number of 
nodes), we visualized density plots using the estimator for discrete 
data in the R package kde1d (134). These supporting analyses are re-
ported as Supplementary text (fig. S4B).

Assessing feature importance with a random forest classifier
To identify which, if any, life-history traits may be good predictors of 
molecular model shifts, we used an approach from the field of super-
vised machine learning known as random forests (135, 136). The ran-
dom forests approach generates a classification model based on a 
population of decision trees (137) and can naturally assess the relative 
importance of different features (138). Here, we focus on the predic-
tion of taxon partitions (groups of terminals) identified in analyses of 
exon data, although alternative analyses of taxon partitions identified 
in other data types generated similar results (not shown). Although it 
may be possible to directly incorporate aspects of phylogenetic dis-
tance into these analyses (138, 139), nonparametric machine learning 
methods like random forests make no assumptions about the distri-
bution of the underlying data and can handle skewed or multimodal 
data as well as categorical data; thus, accounting for phylogenetic 
nonindependence in the data is not expected in the same way as when 
conducting, for example, a generalized least squares (GLS) analysis. 
Nonetheless, we checked for the impact of phylogenetic signal by run-
ning a parallel analysis of phylogenetic residuals, assuming a Brown-
ian motion model (Y~1); ultimately, this did not affect our ranking of 
feature importance and is not discussed further.

First, we split our life-history data into training and test datasets 
with a 70/30 split, accounting for stratified sampling. We then used 
tidymodels (132) to build a recipe for data preprocessing, specifying 
several steps: 1) removing any variables correlated with others at a 
Pearson correlation coefficient > 0.95, 2) normalizing (centering and 
scaling), 3) creating dummy variables for categorical variables with 
one hot encoding, and 4) generating synthetic positive instances us-
ing ADASYN algorithm (140) to increase the sample size of small 
groups to at least 50% of the size of the largest group (setting the 
number of neighbors to 2).

Next, we specified the structure of the model, including hyperpa-
rameters “mtry” (number of features to sample, set to tune automati-
cally) and “min_n” (minimum number of data points in a node to 
allow further splitting, set to tune automatically). We set the number 
of trees in a forest to 1000 and specified the “randomForest” engine 
(141). To tune the hyperparameters, we used k-fold cross-validation 
with 10 folds repeated 10 times. We selected the best model from the 
hyperparameter tuning based on the AUC using the estimator from 
Hand and Till (142) and fit it to the training set. The AUC can be 
interpreted as the probability that a randomly chosen positive ex-
ample is ranked above a randomly chosen negative example and 
ranges from 0 to 1, with values closer to 1 reflecting better model 
performance. Last, we estimated permutation-based variable impor-
tance (143) using the VIP R package (144) with 500 simulations 
(Fig. 2, left). See supplementary R script RandomForest_var_imp.R 
for details.

To further investigate these results, we fit fixed shift OUM [shift-
ing θ(t), with fixed α and σ2; equivalent to that used by ℓ1ou] models 
using OUwie (27) to the two most important features identified by 
the random forest classifier. This model is a much better fit to the data 
than a single-peak OU model (e.g., ΔAICmass = 67.5). We used 100 
parametric bootstrap replicates to estimate model parameter uncer-
tainty (Fig. 2, right). We also simulated 1000 datasets under each fit-
ted OUM model to visualize diagnostic distributions of expected 
trait values at the present (e.g., tip data simulated under the fitted 
model; Fig. 2, right). These models, therefore, indicate the expected 
shifts in trait optima θ(t) that coincide with bipartitions identified in 
the analyses of molecular data.

Analysis of metabolic rate data
To assess whether molecular model shifts may be associated with 
shifts in patterns of metabolic scaling, we assessed support for coinci-
dent shifts in patterns of metabolic allometry. We used the Bayesian 
phylogenetic framework implemented in the R package bayou 2.0 (29, 
128). bayou applies a reversible jump Markov chain Monte Carlo ap-
proach to detect the magnitude, number, and phylogenetic position of 
model shifts. Using bayou, we implemented an allometric regression 
model that relates BMR and body mass logarithmically and for which 
slope βmass and intercept β0 evolve under a multi-regime OU process. 
Here, model shifts reflect shifts in the optimum of the evolutionary 
allometry between BMR and body mass.

Using the rjMCMC approach in bayou, we estimated the posteri-
or probability of an allometric shift occurring along the 12 candidate 
edges identified by Janus. Under a Poisson prior, we specified the 
mean number of shifts across the phylogeny reflecting 2% of the total 
edges in the tree (λ = 8) with equal probability. In this context, max-
imal posterior probability indicates an increase over the prior prob-
ability by ~50%. We ran each analysis across three replicate chains for 
10 million iterations, sampling every 1000 iterations. Given that we 
did not have consistent estimates of measurement error, we followed 
the approach of Uyeda et al. (29) and explored alternative analyses 
assuming an SE of 0.1 or 0.01 for BMR and recovered a negligible 
impact (not shown).

Our priors for α, σ2, βmass, β0 reflect half-Cauchy or Gaussian 
expectations:

Replicate analyses with rjMCMC identified numerous shifts in 
the slope and intercept at a posterior probability cutoff of 0.1 after 
discarding the first 40% of samples as burn-in. Following rjMCMC 
runs, we reestimated model parameters on a fixed configuration 
model reflecting all molecular shifts identified with Janus (Fig. 3). We 
assessed model convergence by examining Gelman and Rubin’s R 
statistic (145, 146) and effective sample sizes across chains and pa-
rameters (see table S1 and the BMR directory on the author’s GitHub 
repository; https://github.com/jakeberv/avian_molecular_shifts/
tree/main/BMR). Last, we visualized how the estimated allometric 

α ∼ half − Cauchy (scale = 0.1);myr−1

σ2 ∼ half − Cauchy (scale = 0.1);
ln(BMR watts)

myr

βmass ∼ N (μ = 0.7, σ = 0.1);
ln(BMR watts)

ln(body mass g)

ln(β0) ∼ N (μ = −3.5, σ = 1.75); ln(BMR watts)
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slope and intercept parameters scale with the body masses of species 
within the specified shift regimes (fig. S10).

Linkages among GC content, effective population size (Ne), 
and body mass
We checked to see whether the average clade body mass within 
groups identified by Janus corresponded to average GC content or 
estimated equilibrium GC content (fig. S8). We find strong negative 
relationships consistent with a mechanism of GC-biased gene con-
version in each case, assuming that Ne is broadly and negatively cor-
related with body mass. The relationship between Ne and body mass 
is generally accepted to result from the relationship between environ-
mental carrying capacity and body mass (e.g., there are fewer os-
triches than sparrows) (18, 19, 147–149). Here, we share the results 
for exons and introns, which have a sufficient number of identified 
regimes to perform this check, although the patterns were similar for 
UTRs and mtDNA (fig. S8). These results recapitulate the patterns 
shown in Fig. 1 (bottom), indicating a more significant deviation be-
tween empirical and estimated equilibrium base frequencies for cod-
ing than noncoding sequences. We speculate why these deviations 
may be more pronounced for exons within the manuscript text (e.g., 
functional constraints, codon usage bias, recombination, selection, 
or DNA polymerase function). These patterns are generally consis-
tent with those previously reported in the referenced literature (21, 
64) and support GC-biased gene conversion as a mechanism driving 
the patterns we detect (e.g., R2 values >0.5).
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