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Materials and Methods 

1 Inferring the squamate phylogeny 

1.1 Overview 
Our phylogenetic approach was a multi-stage process. First, we collected 5462 loci from 891 in-
group individuals across the squamate tree and augmented this dataset with previously published 
phylogenomic data from 319 in-group individuals. After filtering, we generated a phylogenomic 
constraint backbone consisting of 1018 species. Second, we downloaded all squamate genetic 
sequences from NCBI GenBank; in total, this resulted in a 72,152 bp alignment (56 loci) across 
6,885 species. We created a supermatrix alignment from these data. With this supermatrix 
alignment, we inferred a phylogeny using our phylogenomic backbone as a topological 
constraint. To do so, we used maximum likelihood to estimate family-specific trees and grafted 
the resulting trees onto the phylogenomic backbone. Third, we time-calibrated our phylogenomic 
tree. We first identified the minimum set of species that would allow us to place our 31 fossil 
calibrations; we then dated a subsampled phylogenomic tree containing just these 134 tips. We 
used the dates from the phylogenomic phylogeny as secondary calibrations to date the phylogeny 
of all 6,885 species. We refer to this phylogeny as the primary tree, and it served as the basis for 
the results shown in the main text. We then performed two additional steps to account for 
uncertainty at several levels. For diversification analyses, we generated a distribution of pseudo-
complete (sometimes labeled “fully sampled”) phylogenies by using imputation to place the 
3,872 species that lacked genetic data (out of 10,757 currently accepted squamate species). We 
also created a distribution of phylogenies to account for uncertainty in phylogenetic inference, 
divergence dating, and imputation. Across this distribution, we repeated our core comparative 
analyses: we estimated diversification rates, inferred rates of trait evolution, and identified nodes 
on which patterns of trait evolution shifted.  

1.2 Inferring a phylogenomic backbone 

1.2.1 Sampling 

We sampled broadly across the squamate phylogeny, targeting species that reflect the full 
phylogenetic breadth of the clade. Where possible, we targeted samples from specimens that 
have been accessioned into museums, as it is increasingly clear that whole-body preserved 
voucher specimens are essential to maximize the long-term utility of genetic data (44–46). 
Ninety-one percent of our phylogenomic samples are represented by an associated whole-body 
voucher specimen accessioned into global natural history collection network (47). Table S1 
details the provenance and voucher numbers for these phylogenomic samples. Samples not 
represented by voucher specimens in natural history museums are associated with either (a) 
tissues lacking whole-body voucher specimens (e.g., tail tips), or (b) field-collected specimens 
with pending accessions in the global natural history collection network. All specimens included 
in the project under the latter category were collected with appropriate scientific research permits 
and animal ethics approvals from the relevant institutional and governmental authorities; see 
MDAR reporting form for additional details. 
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In total, our sampling spanned 891 species-level taxa. In a few cases, two or more individuals 
were sampled from the same nominal species because the species exhibited cryptic diversity that 
had yet to be formally recognized. Some of these data (n = 136 samples) were previously-
published in regionally-focused projects from our research groups (48–51); however, we 
reanalyzed all data under a common framework for this study.  
 
We augmented our data collection with previously-published phylogenomic studies on 
squamates. On September 8, 2017, we searched “phylogenom* AND (squam* OR lizard* OR 
snake*)” on Web of Science and Google Scholar. In total, we identified 15 papers from which 
we could extract data. After excluding all species already represented in our new dataset, these 
previously published studies added an additional 319 species (Data S1). Where possible, we 
downloaded the original raw high-throughput sequencing reads so that we could reanalyze these 
data across a common pipeline. 
 
After removing individuals with poor data quality (see below; fig. S30) and outgroups, we 
sampled phylogenomic data from 1,083 species, and 55 of the 68 currently-recognized families 
in squamates. 

1.2.2 Data Collection 

We employed a target-capture approach to collect 5,462 loci from each individual (51). This 
Squamate Conserved Loci (SqCL) set spans three types of loci: 372 anchored hybrid enrichment 
loci (AHE; (52)), 5,052 ultraconserved elements (UCE; (53)), and 38 single-copy loci commonly 
used in traditional phylogenetics (54). 
 
For each individual, we extracted DNA from either liver or tail tissues using high-salt extractions 
or phenol-chloroform DNA extraction (55) and then quantified DNA quality and quantity using a 
QuBit v2 and Nanodrop 2000. We then contracted with Rapid Genomics (Gainesville, Florida, 
USA) to prepare dual-indexed sequencing libraries per sample. Approximately one ng of DNA 
was fragmented to a modal 400 base pairs (bp) using sonication and then standard Illumina 
protocols were followed to generate sequencing libraries. We created sample pools, combining 
equimolar amounts of each library across 16 samples. Samples were pooled by taxonomic 
identity to reduce competition for target binding (56). We then contracted with Arbor 
Biosciences (Ann Arbor, Michigan, USA) to conduct target-capture experiments. Target loci 
were captured following the MyBaits v3 protocol with the SqCL v2 probe set. This protocol was 
slightly modified to use the NimbleGen xGen Blockers, which have been shown to increase 
capture efficiency in non-human taxa (57). Following target capture, we combined across 6 pools 
in equimolar amounts to result in a final pool of 96-samples. Each of 96-set of samples was 
sequenced across one 125-bp paired end lane of Illumina HiSeq 4000 sequencing at the 
Advanced Genomics Core at the University of Michigan (Ann Arbor, Michigan, USA). 
 
To generate outgroup sequences, we downloaded from the NCBI database full genomes for a set 
of non-squamate vertebrates: chicken (galGal5), human (hg38), zebra finch (taeGut2), western 
painted turtle (chrPic1), and American alligator (allMis1). From these genomes, we mapped our 
target loci sequences from the SqCL set to each genome using blat v36x1 (58) and extracted the 
sequence using samtools v1.3 (59). For ultraconserved markers, because our target locus only 
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spans the conserved region of ~150-200 base pairs, we extracted an additional 1000 base pairs 
around this central region. 

1.2.3 Data Processing 

We processed newly collected and previously published raw sequencing data using a previously 
published pipeline (51). Briefly, we demultiplexed reads and then removed adaptors using 
Trimmomatic v0.39 (60), trimmed low-quality regions using Trimmomatic, and merged 
overlapping-paired reads using PEAR v0.9.11 (61). We assembled cleaned reads using Trinity 
v2.1 (62) and annotated assemblies by identifying reciprocal best-hit matches to our target loci 
with blat. We mapped trimmed reads to annotated loci with bwa v0.7.15 (63) and called variants 
using samtools v1.5 (59). Most individuals were captured for most loci, and captured loci 
averaged ~800 bp in length and had high coverage (>60x; fig. S2). 

1.2.4 Phylogenomic inference 

We aligned data by locus using mafft v7.310 (64). Visual inspection of alignments found that 
alignments for some loci (particularly the tail-ends of ultraconserved elements) contained 
excessive gaps. To improve the quality of these alignments, we implemented four stages of 
filtering. First, we removed any individuals whose sequences were <300 bp in length. Second, 
we removed any sites that consisted of >70% gaps. These filters were chosen based on a visual 
inspection of ~10 alignments. Particularly for UCEs, alignments can be ragged at the ends. We 
found this filter removed many of these sites which appear poorly aligned. These filters are 
similar to those used in other vertebrate phylogenomic papers and which have been shown to 
perform satisfactorily (65). Third, we applied a filter in which stretches of sequence with 
excessive private or near-private alleles were removed (65). This approach measures the 
frequency of sites that contain private alleles across sliding windows of variable length and then 
trims any sequences with >25% of private alleles. Finally, we removed any individuals that were 
sampled at <5% of the targeted loci and any loci that consisted of <30% of sampled individuals. 
 
Using these trimmed alignments, we implemented two phylogenetic approaches: a coalescent-
based approach based on gene trees and a concatenated maximum likelihood approach. For the 
coalescent based approach, we first inferred gene trees for each trimmed alignment under the 
GTRGAMMA model implemented in RAxML v8.2.11 (66). We calculated nodal support across 
all nodes using the Shimodaira-Hasegawa-like approach (67). We then collapsed all nodes with 
branch lengths less than 5e-5 and <10 support and used the resulting gene trees as input to 
ASTRAL-III (68). The resulting ASTRAL tree included several unexpected relationships 
inconsistent with common understandings of squamate evolution. To determine possible causes 
for these discrepancies, we conducted a series of analyses, which included: 

● filtering loci more aggressively for missing data 
● being more and less lenient in which nodes we collapsed based on support levels 
● identifying putative outlier loci by calculating Robinson-Foulds distances among loci and 

ordinating distance matrices 
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● removing loci that showed strong evidence for rate and substitution heterogeneity as 
measured by root-tip variance 

Even following aggressive filtering, the coalescent-based approach continued to result in 
questionable tree topologies (fig. S31). For example, Rhineurinae is neither sister to Lacertinae 
nor nested within Amphisbaena. Others have reported similar pathologies with coalescent-based 
approaches (65), including a recent study that inferred a phylogenomic tree spanning all 
squamates (69). Thus, we focused all subsequent inference and analysis on a concatenated 
approach. However, we note that concatenated approaches can also return spurious results with 
respect to tree topology. Spurious results are most likely during rapid radiations with short 
internode lengths that fall within the “anomaly zone” (70). Previous phylogenetic analyses have 
shown that several branches within Squamata fall in the anomaly zone, particularly in the 
Iguania group (50, 71). 
 
For the concatenated maximum-likelihood approach, we concatenated all loci and then inferred 
an initial topology using ExaML v3 under a GAMMA model (72). Based on this initial topology, 
we identified both rogue loci and rogue taxa. Previous phylogenomic studies have shown that a 
few discordant loci can have a disproportionate effect on phylogenetic inference (73). 
Accordingly, for each locus, we compared its log-likelihood under the gene tree topology versus 
the log-likelihood of the same locus constrained to the concatenated topology. Log-likelihoods in 
both cases were calculated using RAxML under a GTRGAMMA model. If the difference in log-
likelihood was large, this indicates the concatenated topology is a bad fit to the locus and might 
suggest it is potentially a rogue locus. 232 loci had large log-likelihood differences, and thus, we 
removed these loci in subsequent analyses. We additionally used RogueNaRok to identify 
potential rogue taxa (74). To do so, we created 100 bootstrap alignments that randomly sampled 
1% of the loci. For each of these subsampled alignments, we inferred the topology using ExaML. 
We then used this set of 100 bootstrapped trees and our initial tree based on a full alignment as 
inputs to RogueNaRok. This approach identified 49 potential rogue taxa. After removing these 
“rogue” loci and taxa, we re-inferred the concatenated topology using ExaML. Finally, using the 
ExaML topology as the starting tree and the filtered concatenated alignment, we re-inferred the 
tree and generated 1,000 ultrafast bootstraps using IQTree v2.0-rc1 (75) (fig. S32). 
 
Other studies have shown that phylogenetic trees inferred with large datasets can lead to high 
bootstrap values even when there is underlying phylogenetic uncertainty (76). Accordingly, as an 
alternate measure of phylogenetic uncertainty, we mapped levels of gene tree discordance across 
nodes using phyparts v0.0.1 (77). This approach identified numerous cases of phylogenetic 
uncertainty (fig. S33), some of which were explored in greater depth in (50). 

1.3 Maximizing species coverage: supermatrix approach 

1.3.1 Mining previously published GenBank data 

To generate a supermatrix alignment of all previously-published genetic data published for 
Squamata, we used the program PyPHLAWD to mine the NCBI GenBank database (78). 
PyPHLAWD can be run using either a baiting approach in which target loci are used to retrieve 
homologous loci from a defined taxonomic span or a clustering approach in which all loci from a 
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defined taxonomic span are downloaded and clustered by sequence identity. We used the 
clustering approach because initial explorations found that the clustering approach resulted in a 
greater number of high-quality sequences than the bait approach. We ran PyPHLAWD in 
clustering mode with Squamata as the taxonomic clade of interest.  
 
Most clusters mapped to single-copy genes that are traditionally used in genetic-based 
phylogenetic studies of squamates (e.g., those included in (54)). A handful of clusters were more 
complicated and required manual annotation. First, many of the clusters stemming from 
mitochondrial data spanned several mitochondrial genes. For these clusters, we split up 
sequences across loci by annotating locus boundaries using mitochondrial reference proteins and 
exonerate v2.4.0 (79). We then created locus-specific sequence sets. Second, one cluster 
consisted of two different paralogs (SLC8A3 and SLC8A1). For this cluster, we split up the 
sequences by paralog identity by re-clustering the data at a higher percent-identity cutoff with 
vsearch v1.3 (80). Finally, one cluster consisted of RAG1, which is a long gene. Most studies 
either sequence the first half or the second half of the gene. However, both halves of the gene 
formed one cluster. To improve alignment quality, we split the two halves of RAG1 into two 
separate locus datasets.  

1.3.2 Mining Sanger loci from newly collected data 

Many of the loci identified from the PyPHLAWD clustering analysis were also collected for our 
phylogenomic samples. We extracted these loci from our phylogenomic datasets and added them 
to the GenBank data. See Table S4 for a mapping of SqCL loci to genes downloaded from 
GenBank. 
 
Our phylogenomic data collection did not capture any mitochondrial data. However, the majority 
of the data in our PyPHLAWD clustering analysis derived from the mitochondrial genome. 
When collecting target capture data, anywhere from 40-80% of reads are on-target, and the 
remainder derive from other genomic regions. The majority of this so-called by-catch map to the 
mitochondria, and thus the by-catch can be used to reconstruct mitochondrial genomes. We used 
MITObim v1.9.1 (81) to assemble mitochondrial genomes. For each individual, we downloaded 
from GenBank the full mitochondrial genome from the closest possible phylogenetic relative as 
initial bait. We then extracted the mitochondrial genes from the reconstructed mitochondrial 
genomes after annotating the genome using the protein2genome function of exonerate and 
mitochondrial protein sequences. The mitochondrial protein sequences were obtained from the 
PyPHLAWD clustering analysis. We identified the non-coding 12S and 16S ribosomal RNA 
genes using the dna2dna function of exonerate and reference sequences from the PyPHLAWD 
clustering analysis. We added all these data to our existing GenBank loci sets. 

1.3.3 Taxonomic reconciliation 

Each sample or sequence in both our phylogenomic dataset and our NCBI GenBank-based 
supermatrix is attached to a species name. However, species names do not always reflect the 
most up-to-date understanding of current taxonomies. Some species names have undergone 
numerous revisions through the years – e.g., as subspecies are elevated to species, cryptic species 
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are formally recognized. In such cases, a species name might ambiguously map to multiple 
species names in the current taxonomy. In order to address these issues and provide a 
standardized taxonomy, we cross-referenced all species names to a single, relatively current 
taxonomy: the species list included in ReptileDatabase published on 19 December 2019 (82).  
 
For the phylogenomic samples, 930 of the 1083 samples were assigned to a species that mapped 
unambiguously to a species in the ReptileDatabase. We manually identified the species name for 
the remaining 153 phylogenomic samples. 
 
For the NCBI GenBank-based sequence accessions, 83% of accessions’ species identities 
mapped one-to-one to a species in the ReptileDatabase. For the remaining 17% of accessions, we 
used the following iterative approach to update their taxonomy. First, we checked if these 
accessions were included in two other recent supermatrices of squamates: (83) and (84). In cases 
of overlap, we used the taxonomy determined by the squamate experts involved in these studies. 
Next, we evaluated accessions manually to determine the most likely species name, referencing 
locality of sample and original published literature as necessary. Finally, for any remaining 
accessions, we kept the original taxon names as according to the NCBI taxonomy. 
 
In some cases, updating the taxonomy led to some species being represented by multiple 
sequences at the same locus. In these cases, we first chose to keep the sequence generated 
internally, then accessions shared with (83) and (84), then accessions that mapped to a species 
with less ambiguity, and then finally the longest locus. Our taxonomic reconciliation and 
resolution of synonymies can be found in Data S2 as well as accessions for each locus. 

1.3.4 Aligning loci 

In order to ensure high-quality alignments across this phylogenetic scale, we focused on the 
coding sequence portion of loci only and guided alignment of these loci based on their amino 
acid sequences. To do so, we first used exonerate to ensure that all sequences were in the 5’-3’ 
direction by comparing locus data to the amino acid sequence for that locus. Again using 
exonerate’s alignment of the protein sequence to DNA sequence, we extracted the coding 
sequence from the locus and used the SuperCrunch coding translate test to ensure the coding 
sequence was in the right frame (83). We then ran MACSE v2 on the coding sequences to 
identify any frameshifts in the locus sequences (86). We aligned the resulting translated amino 
acid sequences using Mafft (with the L-large-INS-1 strategy; (87)) and then used the amino acid 
alignment to derive the nucleotide alignment using the pxaa2cdn function in phyx (88). Next, we 
trimmed the nucleotide alignments with the trimAlignment module of MACSE to remove any 
positions at the end of the alignments that had <10% occupancy. Then, to identify potential 
rogue taxa for each given locus alignment, we used quartet sampling (89). Each internal branch 
in a phylogeny subtends four clades. In quartet sampling, single tips from each clade are 
randomly sampled to generate a four-taxon set for which a phylogenetic topology is then 
inferred. One metric calculated in quartet sampling is Quartet Fidelity. For a given tip, Quartet 
Fidelity takes all four-taxon trees including the tip and calculates the percentage of those four-
taxon trees that are concordant with the consensus phylogeny. Tips with low Quartet Fidelity 
scores are potentially rogue taxa and were thus removed. We then concatenated these filtered 
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alignments to create our supermatrix, which resulted in a 72,152 bp alignment (56 loci) across 
6,885 species (fig. S34). 

1.3.5 Phylogenetic inference 

To take advantage of the data-rich inference afforded by our phylogenomic dataset, we used the 
phylogenomic tree as a backbone to infer a phylogeny with the supermatrix alignment. We first 
took the phylogenomic tree and conservatively collapsed any nodes that varied across replicate 
runs of IQTree. This resulted in the collapse of <2% of total nodes. Then, per taxonomic family, 
we both extracted the corresponding clade from the phylogenomic tree and created a clade-
specific subset of the supermatrix alignment. Using IQtree, we inferred a family-level phylogeny 
using the phylogenomic family tree as a topological constraint. Several families (20 out of 52) 
had two or fewer phylogenomic tips; for these families, we inferred an unconstrained phylogeny. 
In all cases, we inferred the phylogenies with 8 partitions: one for each codon position, for 
mitochondrial and nuclear genes separately, and separate partitions for the ribosomal genes 12S 
and 16S). Each IQtree analysis started with 50 runs and was followed by a final optimization 
step using the nearest neighbor interchange algorithm. After inferring family level trees, we 
knitted all the resulting phylogenies together in R, guided by the family relationships inferred in 
the phylogenomic analysis. A modest number of taxa (n = 50; 0.7% of all taxa) belonged to a 
family too small to include in its own analysis. To place these taxa, we used IQTree to run a final 
analysis of the full Squamata supermatrix with the concatenated family-level trees as a 
constraint, along with the phylogenomic backbone. In this final run, we included Sphenodon 
punctatus as an outgroup sequence. 
 
We repeated this analysis using a fully unconstrained approach to determine how topological 
constraint affected phylogenetic inference (fig. S35). 

1.4 Estimating divergence times 

1.4.1 Fossils 

Using a combination of fossils from previously published studies (71, 83, 85, 90) and previously 
described fossils not previously used for large-scale squamate phylogenetics, we identified 31 
fossils across the Squamata tree of life to use as calibrations (see Table S1). These fossils span 
both deep nodes (314 Ma) and more-shallow (recent) nodes (6.3 Ma) and the full diversity of 
Squamata. A few well-known fossil calibrations could not be included because our tree did not 
include the taxa spanning the constraint. 
  
Primaderma nessovi is used here to constrain the minimum divergence date of 
Heloderma+Anguis+Anniella+Xenosaurus (Neoanguimorpha of (71)). Its anatomy suggests that 
it is more closely related to Heloderma than any other extant taxon (91–93). Multiple 40Ar/39Ar 
measurements from volcanic ash associated with the fauna provide a mean age of 98.39±0.07 Ma 
(92). Therefore, 98.32 Ma is used here as a minimum age. 
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Afairiguana avius is used here to constrain the minimum age of Anolis+Gambelia to 49.1 Ma.  
Phylogenetic analysis of 50 taxa with 202 morphological characters suggests that the affinity of 
Afairiguana avius lies well within Iguanidae and possibly within Polychrotidae (95). It therefore 
provides a minimum date for the major radiation within Iguanidae. The specimen comes from 
the Green River Formation exposed at Warfield Springs locality, Wyoming, USA (95), which is 
dated to a minimum age of 49.1 Ma (96). 
 
Odaxosaurus roosevelti is used here to constrain Anguidae to a minimum age of 74.5 Ma. 
Material of Odaxosaurus roosevelti comes from the Kaiparowits Formation exposed at locality 
OMNH V5, Garfield County, Utah, USA (97). The geological context of the Kaiparowits 
Formation has undergone extensive study. Stratigraphic and isotope analyses indicate an age 
range of 74.5–76.6 Ma (98). Therefore, we use 74.5 Ma as a minimum age constraint. 
   
Some studies have inferred fossils from the Jurassic to represent snakes (e.g. (99, 100)). 
However, the affinity of these fossils is controversial, and they are again in the process of being 
redescribed with new more complete material (101, 102).   
 
Tepexisaurus tepexii from the Cretaceous of Mexico (103) has been placed by several 
phylogenetic analyses as more closely related to Xantusiidae than its extant sister taxon 
Cordylidae (104–106). These results suggest that Xantusiidae and Cordylidae must have 
diverged before the age of this fossil (~100 Ma). However, the fossil taxon has also been placed 
within Lacertoidea (108) suggesting that further fossils and analyses are required to be certain of 
the affinities of this taxon. 
 

1.4.2 Divergence dating with MCMCtree and TreePL 

For divergence time estimation, we used a two-step approach. First, we dated a phylogenomic 
tree that spanned a subset of the tips and included a subset of the loci using MCMCTree. Second, 
we used the resulting node ages as secondary calibrations to date the full tree with TreePL. 
 
To date the phylogenomic topology, we used the program MCMCTree from the PAML software 
v4.10 (109). Given the computational demands of divergence dating with molecular data, we 
subsampled our phylogenomic dataset by both individual and locus. First, we identified the 
species that needed to be included in order to place fossils onto the phylogeny. Where multiple 
species were possible, we included the species with the most complete locus sampling. In total, 
we pruned our phylogenomic tree to include 134 species, which spanned major deep nodes as 
well as nodes that would be fossil-calibrated. We additionally included three outgroups (Gallus 
gallus, Alligator mississippiensis, Homo sapiens). Then, we created a subsampled locus 
alignment of 10 loci. To identify the 10 loci for inclusion, we used SortaDate (commit version 
8d3aef3) to identify the loci that were in the 90th percentile for individual-wide sampling, in the 
90th percentile for support values as measured by SH-values, and in the bottom 10th percentile 
for tip-root variance (110). This approach maximizes matrix completeness and ensures the loci 
being chosen are more clock-like and informative than average.  
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We fixed the tree topology to the phylogenomic tree, pruned to just the 134 ingroup and three 
outgroup taxa required to place all fossils. Each of our 10 loci was set to its own partition. Given 
the size of our dataset, we used the approximate likelihood method. Of the 31 fossils, we could 
specify both a minimum and maximum age constraint for seven of them. For these, we specified 
a uniform prior distribution with soft bounds (soft lower bound of 0.01 and soft upper bound of 
0.05). For those 24 fossils with exclusively minimum age constraints, we specified skew-Normal 
prior distributions (soft lower bound of 0.001, soft upper bound of 0.05, scale parameter 0.05, 
shape parameter of 7), with an upper bound arbitrarily set to the lower bound + 20 mya. We ran 
the CorrTest approach (111) to determine which type of clock model to employ, and found that 
our dataset was most consistent with a relaxed clock model with autocorrelated rates. We ran 
MCMCTree for 10.5 x 106 generations, sampling every 500 generations, and discarding a burnin 
of 500,000 generations, resulting in 20,000 posterior samples. We employed a data-driven birth-
death tree prior (112). We ran three independent iterations to verify convergence. 
 
We used a non-parametric rate-smoothing approach, implemented in the software TreePL (113), 
in order to time-calibrate our full tree of 6,885 taxa sampled for both phylogenomic and 
supermatrix data. We treated the 133 divergence dates estimated with MCMCTree (medians 
from the posterior distributions of dates) as secondary calibrations to be applied to the full 
squamate phylogeny. To account for possible molecular clock heterogeneity across the tree, we 
split the squamate phylogeny into 6 clades and time calibrated these independently. For each 
clade, to find the best smoothing parameter for TreePL, we evaluated 125 different combinations 
of TreePL parameters (the opt, optad and optcvad parameters) for cross-validation and identified 
the smoothing parameter with the lowest chi squared score. Each cross-validation run was 
repeated 5 times to account for potential local optima. The smoothing value for each clade was 
identified as the value most commonly identified across cross-validation runs. We repeated this 
procedure for a “scaffold” tree designed to facilitate the merging of these six clades back 
together. We then ran final TreePL runs on each clade with the optimized smoothing parameters, 
and with 50 replicates to increase the chances that the program had found the global optimum. In 
all cases, the 10 replicates with the best likelihood scores had highly correlated divergence times 
(r > 0.995). We finally merged all best scoring time-calibrated clades together to produce a fully 
time-calibrated squamate phylogeny, where all nodes that were present in the MCMCTree 
analysis reflect those divergence times. This time-calibrated phylogeny with all 6,885 tips is 
referred to as the primary tree. 

1.5 Imputing phylogenetic position of unsampled taxa 
Of the 10,757 recognized squamate species, 6,885 of them are included in our tree. For the 
remaining 3,872 species (spanning 651 genera), we used phylogenetically informed imputation 
to generate a distribution of fully sampled phylogenies. These imputed phylogenies were only 
used for inferring speciation rates, because previous work has shown that inferring trait evolution 
on imputed trees can lead to spurious results (114). However, analyses of lineage diversification 
have increased power and lower estimation bias on “complete” phylogenies that include imputed 
taxa (115), relative to analyses that use sampling probabilities to account for missing taxa (116). 
Although we consider speciation rates from the “complete” imputed phylogenies (10,757 tips) to 
be more reliable than those from the “sampling fraction” approach (e.g., no imputation; 
analytical correction for incomplete sampling), these approaches overall gave tip rates that were 
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highly correlated (fig. S36). Speciation rate estimates and the relationship between rates from 
imputed and non-imputed approaches is discussed below in Section 3. 
 
It is clearly impossible to know the phylogenetic position of missing taxa (e.g., with no genetic 
data) with absolute confidence, but it is also true that higher-level taxonomy, biogeography, and 
other information can provide plausible constraints on the distribution of phylogenetic positions 
for such unsampled lineages. We used a combination of taxonomic information, existing 
phylogenies (including the trees generated for this study), biogeography, and published literature 
to make determinations as to the most plausible genus or higher-level clade to which each 
unsampled taxon belonged. Constraints were assumed identical for all unsampled members of 
the same genus. Once all taxa had been assigned appropriate constraints, we used a conservative 
simulation procedure to estimate the distribution of unknown speciation times, conditional on the 
observed set of speciation times from our (sequence-based) phylogenetic tree. Missing species 
were then attached sequentially and randomly within the constraining subclade, subject to any 
exclusion constraints (details below), at the speciation times as simulated under the algorithm 
(117). This imputation procedure is conservative, because it minimizes among-lineage 
diversification rate heterogeneity within any constraining subclades.  
 
For each genus with one or more species missing from the genetic dataset (n = 651), we first 
determined a maximally inclusive stem clade to which the missing taxon could provisionally be 
assigned. This is referred to as the inclusion clade. We then identified any major subclades 
within the inclusion clade where we had strong prior reasons to believe that the focal taxon 
should not be assigned; this latter category was used for only a small number of genera (n = 22) 
where we had strong prior evidence to exclude a particular clade. The scincine genus 
Sphenomorphus is an example of a clade with an exclusion constraint. Our phylogeny and prior 
results (118) indicate that Sphenomorphus is not monophyletic, and thus we conservatively 
assigned the 76 missing Sphenomorphus species to a much larger inclusion clade: the stem 
Sphenomorphinae. However, it is extremely unlikely that any of these unsampled 
Sphenomorphus species – none of which occur in Australia – are in fact nested within the 
phylogenetically, morphologically, and biogeographically coherent Australian subradiation of 
sphenomorphines (118–121). Hence, the Australian sphenomorphinae was an exclusion 
constraint for this genus, such that no unsampled Sphenomorphus species were placed within the 
Australian clade.  
 
Each genus was classified into one of four constraint categories. Type 1 constraints were applied 
to genera that were both present and monophyletic in our phylogeny, and where there was no 
additional information implying non-monophyly. Type 2 constraints were applied to paraphyletic 
genera, with the constraint node fixed to the MRCA of all sampled species in the genus. Type 3 
constraints were applied to species where either (A) the genus was either polyphyletic or 
incoherently paraphyletic (example: Cnemaspis), or (B) the genus was not present in sequence-
based phylogeny but where a suitable higher-level constraint could be identified (example: the 
two species of Mesobaena, assigned to the family-level clade Amphisbaenidae). Type 4 
constraints were similar to Type 2 or Type 3 but specified one or more exclusion clades. The 
majority of missing species (90%; n = 3,487) were assigned Type 1 or Type 2 constraints. Only 
22 genera (145 species) were assigned constraints with exclusions (Type 4), and most of these (n 
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= 110 species) were from two genera: Sphenomorphus and Geophis. Data S3 provides 
information about all constraints used in these analyses.  
  
To simulate the position of unsampled taxa, we determined the constant-rate birth-death 
speciation rate (𝜆) for the target clade for inclusion. For group 3, we used a global 𝜆 inferred for 
the whole tree. We then simulated a possible array of speciation times for missing taxa based on 
branching times of the target clade and our inferred 𝜆, following (117). For group 4 constraints, 
we first clipped all clades marked for exclusion from our phylogeny and then simulated 
speciation times. Speciation times were simulated using the corsim function in R package 
TreeSim v2.4 (120), which generates distributions of “missing” speciation times conditional on 
the set of speciation times that have actually been observed. The missing species were then 
added iteratively to the subtree assuming a uniform prior over the distribution of possible 
topological placements. For our primary tree, we generated 100 imputations so that our estimates 
of speciation rate (see Section 3) could account for the inherent uncertainty of imputation. For 
our pseudo-posterior set of trees (see Section 1.6), we generated one imputation per tree. 

1.6 Accounting for uncertainty 
Uncertainty in our analysis comes from four major sources. First, there is uncertainty in our 
inference of the phylogenomic backbone, best captured as topological variance across bootstraps 
of our phylogenomic analysis. Second, there is uncertainty in our inference of an all-genetic 
phylogeny based on the phylogenomic backbone constraint. Third, there is uncertainty in 
divergence time estimates, best captured as the posterior distribution of node ages in the dated 
phylogeny. Fourth, there is uncertainty in imputation of taxa without genetic data. To account for 
these four sources of uncertainty, we first sampled 100 topologies from the set of 1,000 
phylogenomic bootstraps. There is only modest topological variance across these 1,000 
phylogenomic bootstraps. In total, there are only 29 unique topologies across this set, and eight 
topologies make up 61% of the distribution. Then, we used each of these topologies as a 
constraint for inferring the all-genetic phylogeny, resulting in 100 trees of 6,885 taxa each. We 
dated each of these trees. For each dated tree, we drew from the posterior distribution of the 
MCMCtree analysis and used the node ages as constraints in TreePL. Finally, for each dated 
phylogeny, we imputed all missing taxa as described above. This resulted in a pseudo-posterior 
set of trees that reflects all potential sources of uncertainty: a final distribution of 100 ultrametric 
trees, each consisting of 6,885 taxa placed on genetic data and 3,872 based on imputation (fig. 
S37). 
 
To confirm that our primary findings (via the “primary tree”) were robust to phylogenetic 
uncertainty, we repeated core analyses across this set of pseudo-posterior trees. 

1. Using the primary tree, we found that net innovation and rate of trait evolution were 
higher in snakes than lizards. We calculated the snake:lizard ratio of innovation indices 
and trait rates across the pseudo-posterior trees and compared this distribution to the 
ratios from the primary tree (fig. S25A & B). 

2. Using the primary tree, we found that the primary shift in trait state and rate occurred at 
the base of all snakes (or very near to it) across several traits. We repeated the canonical 
phylogenetic ordination (CPO) approach across the pseudo-posterior trees to determine 
whether we would infer similar shifts as those observed in the primary tree (fig. S25C). 
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3. Using the primary tree, we found that snakes had higher tip speciation rates than lizards. 
We calculated the difference in snake and lizard speciation rates in pseudo-posterior 
trees, based on CLaDS runs on these trees (fig. S25D). 

4. Using the primary tree, we found that none of our sets of explanatory variables can 
explain the speciation rate variation seen across lizards and snakes. We repeated this 
phylogenetically corrected linear regression of predictor traits against speciation rates 
across the pseudo-posterior trees (fig. S25E). 

For these analyses, we used diet composition as inferred by the phylogenetic-free Hierarchical 
Bayesian Clustering approach (see Section 2.2.6.3). All of our major findings are robust to the 
uncertainty captured by our pseudo-posterior set of trees; we find quantitatively and qualitatively 
similar patterns across these trees and our primary tree (fig. S25).  

1.7 Comparison to previous squamate phylogenetic hypotheses 
Relative to previously published squamate phylogenies (20, 50, 54, 71, 83, 93, 108, 118, 123–
127), our phylogeny was based on more phylogenomic data and more single-copy genes and also 
included more species (fig. S38). While more data does not equate to better data, our phylogeny 
is thus the most comprehensive squamate phylogeny published to-date. The topology in our 
phylogeny is largely congruent with previous phylogenomic hypotheses published by (20, 50, 
54, 69, 71, 83, 93, 108, 118, 123–127) (fig. S39). Most of the discordances occur in two known 
“anomaly zones” in squamates (Iguania and advanced snakes (50)), and a few family-level 
relationships (e.g., the monophyly of Amphisbaenia) remain variable across datasets (see fig. 
S23 versus fig. S33). 
 
Similarly divergence times are largely congruent with previous phylogenomic hypotheses 
published by (20, 50, 54, 71, 83, 93, 108, 118, 123–127) (fig. S40, 41). The median estimate for 
the origin of crown group Squamata is in the Late Triassic (~213 Ma) with the shallow end 95% 
confidence interval extending to the boundary between the Triassic and Jurassic (fig. S4). An 
origin time for crown group Squamata near or just before the Jurassic-boundary is consistent 
with several previous molecular divergence analyses (71, 90, 128, 129), as summarized in figure 
5 of (91) and Table 1 of (130). This date is also consistent with some evaluations of the fossil 
record (e.g. (106, 108)). A recent fossil from the Late Triassic of the UK is likely the first clear 
evidence of a crown group squamate within the Late Triassic (131). Aspects of the anatomy 
suggest it may even represent a relatively deeply nested member of Anguiformes (e.g., (131)). If 
correct, this affinity would imply an even deeper origin for crown group Squamata and a notably 
rapid appearance and divergence of the modern crown groups. Continued discovery and analyses 
of fossils, with due caution (e.g. (132)), will likely clarify both the origin time of crown 
squamates and their early diversification. 
  
The divergence between Xantusiidae and Cordylidae is found to be deeper than the age of the 
Cretaceous putative stem xantusiids Tepexisaurus tepexii and Retinosaurus hkamtiensis (103, 
107). The estimated age of Lacertoidea is found to be deeper than the Cretaceous putative stem 
teiids Purbicella ragei and Meyasaurus faurai (108, 133, 135).  
 
There are several fossil constraints where the prior, effective prior, and posterior, have strongly 
overlapping distributions (e.g. Odaxosaurus, Titanoboa, Egernia, Saniwa ensidens, 
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Paleheterodon; fig. S5). However, there are also some where the posterior distribution is notably 
deeper in time compared to the prior and effective prior (e.g. Cretaceogekko, Primaderma, 
Boipeba, Afairiguana, Paramacellodidae, Saichangurvel). This discord may be due to the 
respective fossil being used to constrain a larger more inclusive clade than it actually represents, 
e.g. Afairiguana was used to constrain the divergence of Anolis and Gambelia but it may 
represent a more deeply nested clade (95). This possibility shouldn’t be unexpected given that 
the emergence of notable synapomorphies may not occur immediately after a divergence (135). 
Even if older taxa closer to the divergence are known they may lack an adequate number of 
synapomorphies to identify them as such. There are a few fossil constraints which have a 
posterior distribution that is shallower than the prior and effective prior (e.g. Pantherophis, 
Dorsetisaurus). Assuming the posterior is correct it suggests these fossils may lie outside the 
clades they are being used to constrain. 
 

2 Assembling the squamate trait dataset 

2.1 Overview 
To characterize phenotypic innovation across squamates and to determine how these patterns 
relate to speciation dynamics, we collated and synthesized a species-level dataset  – e.g., 
morphological traits, trophic-related traits, parity mode, biogeographic information, and climate 
niche traits (Table S2). Traits were organized into four categories: primary, secondary traits (type 
1), secondary traits (type 2), and biogeographic traits. 
 
Primary traits are continuous, ordinal, or continuous-like traits where trait variability at the 
clade level is expected to correlate with species-level environmental or ecological diversity. 
More specifically, we define primary traits as those that have a well-defined distance metric 
associated with character state differences (e.g., excludes categorical data) and where trait values 
for individual species are not simply averaged or generalized state assignments applied to entire 
clades. Informally, we view this variational property of traits (c.f. (136)) as consistent with 
variation in fundamental “ways of life” across taxa, or variability in the capacity to evolve / 
adapt itself (evolvability, versatility, innovability). Traits in this category are: body mass, snout-
vent length, elongation index, number of presacral vertebrae, multivariate skull shape, 
multivariate climate space, chemosensory index, multivariate diet composition, and diet breadth. 
 
Secondary traits, type 1 are continuous, ordinal, or continuous-like traits where trait variability 
at the clade level has no relationship or ambiguous relationship with species-level environmental 
or ecological diversity. The only examples in our dataset are two traits associated with limb loss. 
Limb loss has many ecological consequences and, in non-snake lizards, is commonly but not 
exclusively associated with body elongation and burrowing. For non-burrowing examples: many 
pygopodids, Chaemaesura cordylids, and some anguids (e.g., Ophisaurus) are both limb-reduced 
and largely surface active; Lialis pygopodids are sometimes referred to as “slithering geckos”. It 
is clear that being limb-reduced versus non-limb-reduced can be adaptively associated with 
different ways of life. But differences in degree of limb loss – for instance, lizards that have two 
hind digits versus three – are not known to have functional significance. In general, variation 
among species in degree of limb loss seems likely to represent points along an evolutionary 
trajectory leading to body elongation and complete limb loss. There is little evidence for 
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substantive ecological differences between species in clades that show extensive variability in 
numbers of limbs and digits, such as Lerista skinks; we therefore do not view clade-level 
variability in numbers of limbs and numbers of digits as indicative of ecological diversity. Traits 
in this category are: number of digits and number of limbs. 
 
Secondary traits, type 2 are categorical data where metric distances between character states are 
undefined, or where available data are sufficiently coarsely coded as to aggregate across, or to 
eliminate, biologically significant true variability. For example, foraging mode and cranial 
kinesis are classic traits in squamate biology but available summaries typically assign entire 
clades (e.g, snakes) to a single state (“highly kinetic”), while masking extensive within-clade 
variation. Several traits in the dataset fall into this category, but were included for completeness 
due to their perceived importance for squamate biology. As most of these traits are categorical 
variables, innovation cannot meaningfully be computed, and we do not compute evolutionary 
rates for discrete characters that cannot be considered at least semi-continuous (e.g., vertebral 
counts are discrete, but trait distances are effectively metric and can be treated as such in 
Euclidean space). However, we do test whether these traits predict variation in speciation rate 
across squamates. Traits in this category are: skull kinesis type, prehension mechanism, parity, 
and foraging mode.  
 
Biogeographic traits included midpoint latitude of species’ geographic range (latitude) and mean 
elevation across the species range (elevation). These traits were assessed as potential covariates 
of speciation rate. 
 
Sample size varied substantially across different traits (n = 299 for skull phenotypic 
measurements to 9,591 for climatic niche). Below we summarize how we either measured or 
obtained these data.  

2.2 Primary Traits 

2.2.1 Body mass [primary] 

Body mass was compiled from (137) and (138) for over 10,000 species and 97% of taxa in our 
phylogeny, as calculated from maximum body size based on clade-specific allometric equations. 
For species present in both publications, we retained the data from the more recent publication.  

2.2.2 Snout-vent length (SVL) [primary] 

We compiled SVL and total length data from (137, 138), as was done for body mass. This 
dataset is not fully consistent however, with 100% of lizard taxa having SVL measurements, but 
snake taxa being a combination of SVL (7%) and total length (93%). We therefore took an 
imputation approach in order to convert total lengths to SVL for snake taxa.  
 
We compiled body size ratios (SVL / total length) from a number of literature sources and 
museum databases, either as (1) measurements of total length and SVL from the same individual, 
(2) total length and tail length from the same individual, or as (3) relative body length or (4) 
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relative tail length. If any measurement records made mention of any damage to the tail, we 
ignored those records as the measurements could be unreliable.  
 
If species were present in multiple data sources, we retained records in order of preference from: 
(1) (139), (2) (140) / (141) / (142), (3) UMMZ and (4) VERTNET. This ranking was made 
regarding perceived degree of data validation. If multiple records existed for a given species, we 
retained the one that was closest to the median body size ratio for that species.  
 
We then divided our resulting dataset into a training dataset and a testing dataset. The training 
dataset (number of species = 1,112) was composed of all species records with body size ratio, 
and the testing dataset (number of species = 831) was the subset of the training dataset with SVL 
and total length measurements.   

source # species extracted # species 
retained 

Univ. of Michigan Museum of Zoology 
(UMMZ) 

746 309 

(141) 580 281 

(139) 226 207 

(142) 216 159 

VERTNET 98 98 

(140) 106 58 
 
Using the snake clade from our phylogeny, we evaluated the degree of phylogenetic signal in 
body size ratio and found it to exhibit statistically significant signal (Pagel’s lambda = 0.98, p-
value << 0.0001). Using the R package Rphylopars (143), we then modeled body size ratio under 
a Brownian motion model of trait evolution and imputed values for missing species (982 of 
2,094 snake species imputed).  
 
To evaluate this approach, we conducted leave-one-out cross-validation, where we excluded 
each species one by one, fitting the Brownian motion model, and then comparing our imputed 
body size ratio to the known body size ratio. The imputed values were highly correlated with the 
known values (OLS regression R2 = 0.78, p-value << 0.0001). Proportional error of imputed 
relative to known body size error had a mean of 1.00 and a standard deviation of 0.07 (fig. S42). 
 
For all snake species for which we originally had total length but not SVL, we then estimated 
SVL based on total length and known or imputed body size ratios. Leave-one-out cross-
validation of the ratios indicated that known SVL is very highly correlated with estimated SVL 
(OLS regression R2 = 0.99, p-value << 0.0001).  
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2.2.3 Elongation index [primary] 

We calculated the species elongation index by approximating squamates as an idealized cylinder 
with length as the species' SVL and volume as the species' mass (49).  
If 𝑚𝑎𝑠𝑠	(𝑣𝑜𝑙𝑢𝑚𝑒) 	= 	𝜋	 ∗ 	𝑟! 	 ∗ 	𝑆𝑉𝐿 
Then 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛	𝑖𝑛𝑑𝑒𝑥 = 𝑆𝑉𝐿	/	2 ∗ <𝑚𝑎𝑠𝑠	/	(𝑆𝑉𝐿	 ∗ 	𝜋) 
 
This index spans the continuum of heavy-bodied, robust-limbed lizards, such as genera 
Dipsosaurus, Sauromalus and Iguana on the lower end of the spectrum, to long, slender-bodied 
snake genera such as Pituophis and Pantherophis, at the higher end of the spectrum.  

2.2.4 Vertebral number [primary] 

We compiled data on the number of presacral vertebrae for 2,324 species (144–162), in addition 
to using ventral and subcaudal counts of UMMZ snake specimens. Ventral and subcaudal counts 
are a reliable measure of vertebral number in snakes, correlating 1:1 in most species (163, 164).  

2.2.5 Skull morphology [primary] 

Procrustes transformed coordinates for skull shape were acquired from (9). Most analyses of rate 
variation used all 40 coordinates. However, for a few visualizations, we first did a principal 
component analysis and then used the resulting PC1 and PC2 axes. These two axes explained 
46.8% and 15.6% of the variation, respectively.  

2.2.6 Trophic Mode [primary] 

2.2.6.1 Diet data sources and recording formats 
We compiled data from 751 populations of 345 lizard species from 33 lizard families. Most of 
the lizard diet data reflect primary data collected by the authors over more than five decades 
(70.4% of the dataset). We searched for additional diet records with a bibliographic search of 
online scientific databases from Google Scholar™ and Zoological Record™. Nearly all of the 
dietary records for individual lizards are associated with preserved voucher specimens in natural 
history collections. We used the keywords: lizard, diet, feeding habits, feeding ecology, and 
dietary aspects. Each observation recorded in the database describes the proportional utilization 
of a set of prey categories in the diet of a particular lizard species. Proportional utilization is 
calculated in four distinct ways based on (1) volume of prey in stomachs, (2) mass of prey in 
stomachs, (3) frequency of prey in stomachs, or (4) occurrence of prey in stomachs. Because of 
the heterogeneous nature of the data not all metrics are available for all species. 
 
Data on snake diets were pulled from the open-source database SquamataBase described in 
(163). The data in SquamataBase were sourced primarily by keyword queries in academic search 
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engines and by systematic review of table of contents for herpetological journals that routinely 
publish data on squamate ecological interactions. The vast majority of observations in 
SquamataBase are from dissections of fluid-preserved museum specimens (64.9%) or from direct 
encounters of snakes in the field (35.1%). Each observation recorded in the database is a 2-tuple 
of counts describing a number of individual snakes of a particular species that ate a number of 
items of a particular food source: e.g., 12 Thamnophis sirtalis ate 34 toad tadpoles. Many of 
these observations have associated metadata (e.g., geographic location, age, sex, body size, etc.), 
but these additional data were not included in the analysis.   
 

2.2.6.2 Diet data pre-processing 

We conducted two pre-processing steps to map lizard and snake diet data onto a common 
recording format that could be used for subsequent analyses. First, all recorded prey items were 
mapped to a common set of 31 prey categories, including 15 vertebrate categories, 15 
invertebrate categories, and one plant category (see fig. S18 & S19 for a full listing of these prey 
categories). These categories include many of the commonly used prey groups appearing in 
previous studies of squamate diet evolution (7, 24, 25), and the presence of dietary specialists for 
many of these prey groups indicates they are capturing relevant variation in squamate prey 
preferences.  
 
After this first pre-processing step, the snake diet data consist of a standardized set of category 
counts describing the number of sampled snake stomachs that contained each prey category (or 
the number of sampled prey items in each category when the number of sampled stomachs was 
unavailable. This latter measure is generally very close to the number of sampled stomachs due 
to the tendency of snakes to consume a single prey item per meal). A second pre-processing step 
was necessary to bring the lizard data into the category count format. We did so by converting 
the lizard diet observations to “full stomach equivalents”. This was achieved by multiplying the 
observed proportional utilization of a prey category by the number of lizard stomachs that 
contained prey and rounding to the nearest integer. With this step we are, in effect, imagining a 
hypothetical population of lizard stomachs – each full of a single prey – where each full stomach 
is sampled with probability equal to the observed proportional utilization of its given prey. Full 
stomach equivalents were calculated from observed prey utilization metrics in order of 
preference from: (1) volume, (2) mass, (3) frequency, or (4) occurrence. 
 

2.2.6.3 Dietary niche estimation 
Once lizard and snake diet data were brought into a common format, we used the category count 
model described in (166) to calculate a phylogenetically informed estimate of the dietary niche 
of each species while accounting for sample size variation. Briefly, this method postulates a 
number K of distinct dietary niche states and assumes their evolution is governed by a simple 
Jukes-Cantor-like model of change. Further, each dietary niche state corresponds to a latent 
multinomial distribution that describes the proportional utilization of different prey categories, 
and observed dietary count data are modeled as samples from these unobserved distributions. 
Fitting this model to data therefore results in an estimate of the posterior distribution of the 
dietary niche state (i.e., the latent multinomial parameters) for each species. The average of this 
posterior can be thought of as a phylogenetically smoothed version of the raw diet proportions. 
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For each K = 20, 50, 100, 1000 we ran a Gibbs sampler for 2^15 iterations, recording a sample 
every 2^4 iterations for a total of 2^11 posterior samples. Then for each K = 20, 50, 100, 1000 
we assigned each species a continuous dietary niche state as the average over its posterior. 
Finally, we assigned each species an overall average continuous dietary niche state by taking the 
weighted average over K = 20, 50, 100, 1000 using the mean posterior probabilities of each run 
as weights.  
 
We used these posterior averages or their log-ratio transformations for all subsequent analyses 
involving diet. Additionally, we used diet composition across all 31 prey categories in a principal 
component analysis. In a few visualizations, we show diet PC1 & 2 which explain 54% and 14% 
of the variation, respectively. Diet breadth was calculated using the inverse Simpson index of the 
estimated dietary proportions, and serves as a measure of the effective number of prey categories 
included in a particular diet. 
 
As an additional check on our phylogenetic dietary niche state estimates, we performed a second 
set of estimates using Bayesian Hierarchical Clustering, a non-phylogenetic method that 
approximates a Dirichlet process mixture model (167). As before, each dietary niche state 
corresponds to a latent multinomial distribution and observed dietary count data are modeled as 
samples from these unobserved distributions. Species are assigned to niche states solely on the 
basis of their pattern of prey utilization without regard to phylogenetic relatedness. Analyses of 
changes in diet composition and rate of diet evolution were similar whether phylogenetic or non-
phylogenetic methods were used (fig. S17). 

2.2.7 Chemosensory Net Innovation Index (𝚿CHEM) [primary] 

Chemosensory innovation was measured on a semi-continuous scale from character codings at 
the family level (5), where a character had a value of zero (primitive condition), 1 or 2 (derived 
conditions). Only characters 1-7, 9 and 16 were considered as these were the most complete and 
allowed us to retain the greatest number of families in our analyses.  
 
However, the number of traits is small; the extent to which parsimony changes can be treated as 
a metric character debatable; and the data extremely coarse – species were generally assigned a 
single combination of character states that was assumed to be fixed across the entire clade, e.g., 
all snakes receive a score of 12 following (5). Consequently, we consider this character 
insufficiently variable for evolutionary rate analysis but qualitatively reflective of innovation in 
chemosensory anatomy as Schwenk (5) coded these character states relative to inferred ancestral 
state.  

2.2.8 Climate [primary] 

19 Bioclimatic variables and net primary productivity were acquired from CHELSA-CLIM  
(168, 169). A climatic moisture index was also calculated based on CHELSA-CLIM input 
variables, using the envirem R package (170). Climatic variables were averaged across grid cells 
within each species geographic range polygon (10). We summarized across these variables using 
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a principal component analysis. A few analyses use climate PC1 & PC2 which explain 82% and 
13% of the variation, respectively. When calculating climate niche rate, we retained the top six 
PC axes, which explain > 95% of the variance in the data. 
 

2.3 Secondary Traits 

2.3.1 Limbs and Digits [secondary, type 1] 

We coded 6,890 species (all species in phylogeny except Bachia talpa) for number of limbs, 
number of digits on the forelimb, number of digits on the hindlimb, and number of digits overall. 
Number of digits were counted for one side only, such that counts ranged from 0-5 for individual 
sets of limbs and from 0-10 for overall digits. For lineages with variation in limb and digit states, 
we used the primary literature and an online database to code them (82, 171–177). 

2.3.2 Cranial kinesis [secondary, type 2] 

By any measure, most snakes have skulls that are vastly more kinetic than those of other lizards 
(6). However, we are unaware of any quantitative data on the relative degree of kinesis in snakes 
versus lizards. Quantitative data within squamates in general on the degree of kinesis is limited 
to a small number of species, so we chose to score species in a qualitative manner. All species in 
the phylogeny were coded for the presence or absence of mesokinesis, metakinesis, and 
hypokinesis based on clade-level assessments from (6), with a few exceptions where more 
detailed data were available. Note that our coding strategy allows individual species to exhibit 
multiple forms of kinesis. We created an ordinal ranking system where species were akinetic if 
they lacked all of these, low kinesis if one type of kinesis was present, mid kinesis if two types 
were present, and high kinesis if all three were present. Alethinophidian snakes – or, all non-
blindsnakes which comprise 88% of snake diversity – have vastly more kinetic skulls than 
lizards due to their extensive streptostyly and other mobile skull elements (9, 165), as well as 
unilateral jaw mechanics attributable to the loss of the mandibular symphysis (178). We 
therefore added a fourth category, “hyperkinetic”, to capture this general difference between 
alethinophidian snake and lizard skull mechanics. Scolecophidian snakes – also known as the 
blind snakes – exhibit a substantially less mobile skull than alethinophidian snakes, with multiple 
fused skull elements, and were excluded from the hyperkinetic category (179). Our coarse 
codings likely mask extensive variability within clades, but capture broad differences in 
kineticism between them (e.g. snakes have more kinetic skulls than geckos, which have more 
kinetic skulls than amphisbaenians).  

2.3.3 Prehension mechanism [secondary, type 2] 

Prehension refers to biomechanical aspects of the ingestion stage of feeding in lizards. A classic 
dichotomy in squamate biology involves taxa that manipulate prey items with their jaws (jaw 
prehension) versus those that manipulate prey with their tongue (lingual prehension) (6). 
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Cordylidae and Scincidae were coded as having both conditions. Thus, this trait is reflected by 
coarsely coded character state that has largely been applied to lizards exclusive of snakes and 
thus not directly comparable across groups. In addition, prehension as a concept does not map 
cleanly to snakes: it is one component of complex prey subjugation strategies that, in snakes, 
includes at least two major other innovations – venom and constriction. 

2.3.4 Foraging Mode [secondary, type 2] 

Foraging mode states (active or ambush) in snakes were coded at the familial level using state 
assignments from (180) with exceptions for individual species where known (e.g., Acanthophis 
is an ambush forager (181) in the active foraging Elapidae family). Foraging mode states for 
lizards were coded by family with information from (182), unless more specific information was 
available from a range of other references (138, 183–192).   
 
While this trait reflects classic splits in traditional snake lizard ecology, it is coarsely coded at the 
clade level and aggregates across extensive, biologically relevant variability within and among 
species. Further, it is a categorical, non-ordinal trait. Thus, we consider this as a secondary (type 
2) trait. 

2.3.5 Parity [secondary, type 2] 

Parity mode was taken from (193), and updated with (138). This trait is coarsely coded as 
“viviparous” and “oviparous” and masks extensive biologically significant variation along a 
spectrum that includes lecithotrophy to complex placentation. Further, as coded, it is a 
categorical, non-ordinal trait. Thus, we consider this as a secondary (type 2) trait. 

2.4 Biogeographic traits 
Species-specific latitudinal centroid and range were extracted from the (10) range polygon 
dataset for squamates. Elevation was acquired from the GMTED2010 elevation dataset 
(https://www.usgs.gov/coastal-changes-and-impacts/gmted2010). Elevational variables were 
averaged across grid cells within each species’ geographic range polygon (10).  
 

3 Estimating speciation rates 
Our analyses focused on “recent” speciation rates rather than net diversification rates, where “net 
diversification” is the difference between speciation (λ) and extinction (μ) rates. So-called “tip” 
speciation rates provide a lineage-specific estimate of the instantaneous rate of lineage splitting 
near the tips of a phylogenetic tree, conditional on a lineage’s history up to that point in time. 
Typically, these estimators provide increased weight to a lineage’s recent evolutionary history 
and downweight the contributions of deeper evolutionary events (18, 194). In general, 
phylogenetic estimates of speciation rate are more reliable than those of extinction rate (116, 
194, 195), and non-identifiability concerns regarding diversification rates are less acute for 
speciation rates near the present day (196).  
 

https://www.usgs.gov/coastal-changes-and-impacts/gmted2010
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Estimates of speciation rate can be biased by incomplete taxonomic sampling (115); we therefore 
generated fully imputed trees (all 10,757 taxa) to minimize the impact of sampling biases 
[discussed above; Section 1.5]. For our primary tree, we present average speciation rates across 
100 imputed phylogenetic datasets. For our pseudo-posterior set of trees, we calculated 
speciation rate once for each tree. In all analyses of speciation rate and its correlates, we restrict 
inferences only to the set of 6,885 non-imputed taxa for which we have genetic data. However, 
the phylogenies on which those rates were computed included stochastic placements of the 3,872 
unsampled taxa (see Section 1.5) and thus minimize the effects of incomplete sampling on the 
resulting rate estimates. 
 
We used three different approaches to estimating speciation rate: the DR statistic (18), CLaDS 
(197, 198), and BAMM (199). These methods give broadly congruent results, but make different 
assumptions about the nature of rate variation across phylogenies. BAMM assumes that rate 
shifts are infrequent and generally of large effect, but that lineages within rate regimes show little 
variation in rates. DR and CLaDS assume in effect that rates show near-continuous variation 
across the tree, but that changes are typically small. Comparative assessments of these methods 
have been provided by several recent studies (194, 197, 200) and have demonstrated that the 
relative performance of these methods depends on the unknown “true” nature of rate variation 
across the phylogeny, and for that reason we applied all three approaches.  
 
The DR statistic (18, 201) is a semi-parametric approach that estimates speciation rate as the 
weighted mean of the inverted branch lengths from a tip to its root. This measure thus more 
heavily weights recent splits compared to those deeper in the tree. We calculated the DR statistic 
using a custom script in R. CLaDS implements a model-based Bayesian approach in which 
speciation rates evolve across the phylogeny under a model where, after a speciation event, rates 
in each descendant lineage are drawn from lognormal distribution centered on the current rate 
and with a variance that is estimated from the data (197, 198). We ran CLaDS on all 100 of the 
“fully sampled” phylogenies with all 10,757 tips as generated under the phylogenetic imputation 
scheme described above. For comparison, we also analyzed the 6,885 tip ML phylogeny (e.g., no 
phylogenetic imputation) with CLaDS while accounting for unsampled taxa using family-level 
sampling fractions. For both approaches (imputed trees; sampling fractions), we simulated the 
posterior distribution of CLaDS model parameters using Markov chain Monte Carlo (MCMC) 
until suitable convergence statistics were obtained, here measured by a Gelman statistic < 1.05 
(202). CLaDS automatically ends the MCMC run when convergence is obtained. Thus, the 
number of simulated generations varied by run (range: 1,000 to 17,000 generations with a 25% 
burnin; the Gelman statistic ranged from 1.011 to 1.049). For one tree, we ran three independent 
CLaDS analyses, finding high concordance of rate estimates and thus suggesting that 
independent runs were indeed converging on similar posterior distributions. 
  
We also analyzed speciation rates with BAMM (Bayesian Analysis of Macroevolutionary 
Mixtures; (199)), which assumes that lineages shift to new diversification rate regimes under a 
Poisson process. We used the primary tree with sampling fractions only for the BAMM analyses, 
due to the computational cost associated with running BAMM over multiple imputed 
phylogenies. Speciation and extinction rate priors were set to recommended values as estimated 
from the setBAMMpriors function in the BAMMtools R package (203); we specified a prior 
expected number of shifts of 10 and allowed speciation rate to vary through time within rate 
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regimes under a simple exponential decay model. To improve convergence for such a large 
phylogeny, we set MCMC tuning parameters updateRateEventNumber = 1 and 
updateRateEventPosition = 0.25, leaving all other parameters as default. We performed 10^8 
generations of MCMC sampling for each of three replicate runs, sampling every 10,000 
generations, and compared the resulting estimates of tip rates, log-likelihoods, and shift counts to 
assess convergence. After discarding a 10% burnin, the effective size of the log likelihood and of 
the number of rate regimes for the best performing of the three runs was 284.43 and 1,377.86, 
respectively. 
 
We find high convergence across our three estimates of speciation rate (fig. S43) and across 
CLaDS run with imputed trees versus with sampling fractions (fig. S36).  

4 Evaluating phenotypic diversification and speciation dynamics across the tree 

4.1 Calculating innovation indices 
For primary traits, we computed a simple phenotypic net innovation index (denoted by 𝛹 in the 
main text and elsewhere). The innovation index is defined on a per species basis as the distance 
between a species’ measured phenotype and the maximum likelihood estimate (under Brownian 
motion) of the ancestral phenotype at the root of the squamate phylogeny. All distances are also 
standardized by their expected standard deviation under Brownian motion (i.e., the Mahalanobis 
metric). We calculated four innovation indices: 

● 𝛹skull: distance to inferred skull composition of ancestor 
● 𝛹vert: distance to inferred vertebral count of ancestor 
● 𝛹elong: distance to inferred elongation index of ancestor 
● 𝛹diet: distance to inferred diet composition of ancestor 

 
We additionally include a chemosensory innovation index, 𝛹chem. Chemosensory innovation was 
measured as the sum of chemosensory character codings at the family level (5), where a 
character had a value of zero (primitive condition), 1 or 2 (derived conditions). Only characters 
1-7, 9 and 16 were considered as these were the most complete and allowed us to retain the 
greatest number of families in our analyses.  
 
As an alternative to our net innovation index, we also computed an index of net change along 
individual branches for the same traits, calculated as the absolute change in reconstructed states 
between parent and descendant nodes, to visualize where on the phylogeny net change in trait 
evolution is distributed (Fig. S7). 
 

4.2 Estimating phenotypic rates 
We use a DR-like statistic (18, 201) to estimate recent rates of phenotypic evolution for 
individual species that we refer to as phenotypic tip rates (TR). The phenotypic tip rate 𝑇𝑅" for 
terminal node i is computed as 
 

𝑇𝑅" = ∑ #!(#)#!(#)%
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where 𝑛" is the number of ancestors on the path from tip i to the root, 𝑼𝒊(𝒋) is a column vector of 
standardized contrasts for the j-th ancestor of tip i, and 𝑈"(%), denotes its transpose. Note that 
ancestors are numbered from 1 beginning with the most recent ancestor and ending with the most 
ancient ancestor on the tip-to-root path. Standardized contrasts are computed using the usual 
peeling algorithm (204). Note that for multivariate traits the tip rate calculation returns a matrix. 
In the main text, we reduce this matrix to a single value by taking the sum of the diagonal 
entries. The maximum likelihood estimate 𝛴E of the evolutionary variance-covariance matrix can 
be recovered from the tip rates as  
 

𝛴E = '
-.'

∑ 𝑇𝑅"-
"&'   

 
where 𝑁 is the number of terminal nodes. 
 
Because of the relationship between phenotypic tip rates and the evolutionary variance-
covariance matrix, we expect that phylogenetic variation in the tempo of phenotypic evolution 
will be captured by these tip rates and visible as shifts in the value of the mean tip rate over 
different regions of phylogeny.  
 
To validate this expectation, we simulated 10 multivariate trait datasets on the full squamate 
phylogeny for each of 0, 1, 2, …, and 10 rate-shifts for a total of 100 simulations. Each dataset 
had five trait dimensions. Rate-shift locations were chosen at random from among all internal 
nodes with at least five present-day descendants. The evolutionary variance-covariance matrix 
for each rate-shift was sampled independently from a Wishart distribution with 5 degrees of 
freedom and a diagonal scale matrix with scale parameter drawn uniformly from the interval 
(0, '

!/,0&
). Here, 𝑇 is the maximum branch length in the rate-shift subtree and 𝛿 is a standard 

uniform random variable. This parameterization scales the height of the Gaussian transition 
kernel for each rate-shift to lie between 0 and 1 on all branches. 
 
Simulation results are shown in Figure S44. 

4.3 Phylogenetic regression 
We ran a series of phylogenetic regressions to evaluate the relationship between phenotypic 
diversification and speciation rate dynamics (as described by CLaDS or BAMM estimated tip 
rates). 
  
The general form of these regressions was 
  

Y = XB + e 
  
Where Y is a column vector of log-transformed speciation tip rates, X is a matrix of phenotypic 
predictors, B is a column vector of regression coefficients, and e is a column vector of 
phylogenetic residuals. 
  
Prior to estimating regression coefficients, we pre-multiplied the left- and right-hand sides of the 
equation by a phylogenetic contrast matrix (205). This procedure leaves the regression 
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coefficients unchanged but removes phylogenetic correlation from the residuals, allowing us to 
estimate the coefficients using the technique of ordinary least squares. To compute the contrast 
matrix, we set all branch lengths to 1 and used the ordinary Felsenstein peeling algorithm as 
described by (205). This assumes the correlation structure in the logarithm of speciation tip rates 
is roughly Brownian. In particular, that the covariance between the logarithm of two tip rates is 
proportional to the number of shared branches between their most recent common ancestor and 
the root of the phylogeny. This branch length treatment aligns with the assumptions of the ClaDS 
model, which models lineage-specific speciation rates under the assumption that each speciation 
rate is a random draw from a constant variance log-normal distribution that is centered on the 
ancestral (log) speciation rate. As an additional check, we also performed a second set of 
regressions using the time-calibrated branch lengths. 
 
We defined a total of 11 different regression models (Table S3) for different classes of 
phenotypic traits (including skull shape, diet, etc.). In general, we find very limited ability to 
explain speciation tip rates for the sets of phenotypic predictors examined, with the best model 
using CLaDS speciation rates achieving a phylogenetic R2 of only 1% regardless of whether 
time-calibrated branch lengths are used or not. 
 

4.4 Phylogenetic variance partitioning 
One explanation for the limited ability of phylogenetic regression models to predict tip 
speciation rates is that only a small number of historical events are responsible for structuring 
variation in speciation rates and phenotypic traits. In such a scenario, phylogeny may still have 
substantial explanatory power because shifts in the mean structure of a trait are associated with 
particular clades (19). Canonical phylogenetic ordination (CPO) is a method designed to detect 
such a scenario. In its most basic implementation, CPO is an ordinary (least squares) regression 
that uses clade membership to predict variation in a dependent variable. Various selection 
techniques may be used to identify clades that should enter into the regression as important 
predictors. For example, in the original description of CPO a randomization technique was used 
to assess the statistical significance of individual predictors and to decide which clades to include 
in the final regression model (19). 
 
To determine the extent to which deep history is responsible for structuring variation in the 
squamate trait dataset, we conducted a phylogenetic variance partitioning analysis (CPO) for 
speciation tip rates and for many of the different phenotypic predictors listed in Table S2. 
Formally, this analysis finds a set of K - 1 branches that partition the phylogeny into K subtrees 
such that the total sum of squared errors within each subtree is minimized. Equivalently, it 
identifies the K subtrees that best explain variation in the mean structure of a trait. 
  
In contrast to the randomization technique used in the original CPO description, we used a 
greedy stepwise algorithm to find an optimal partition: using the optimal partition for K = 2, we 
find the optimal partition for K = 3, and so on up to some maximum number of subtrees. At each 
step, the optimal partition was defined to be the partition that explained the most variation 
(achieved the highest R2) in the dependent variable. 
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Results of the variance partitioning are shown in Figure S14 & S15. In general, we find that a 
substantial fraction of variance in all examined traits is explained by typically just one or two 
subtrees from the larger squamate phylogeny, and that a node near the most recent common 
ancestor of snakes frequently explains the most variation. The only exception to this pattern was 
the climatic niche dataset. 

4.5 Parametric models of phenotypic evolution 
We used a stepwise procedure to fit multirate phenotypic models to primary traits in the dataset: 
multivariate skull morphology, multivariate climate, multivariate diet, mass, presacral vertebral 
count, and elongation index. For each trait, the general procedure entailed using a stepwise AIC 
procedure to find the configuration of rate shifts across the phylogeny that best explained the 
observed data. In each case, we assumed that trait distributions were generated by multiple rate 
regimes across the phylogeny, where each rate regime corresponded to a uniquely parameterized 
univariate or multivariate Brownian motion process. Thus, a “shift” on the phylogeny 
corresponded to a partial or full decoupling of the evolutionary rate matrices before and after the 
inferred shift event. We considered two distinct classes of shift models, which we refer to as rate 
shift and rate-state shift models, respectively. The rate shift and rate-state shift model differ in 
two important respects that are especially significant in the case of multivariate data. First, in the 
rate shift models, the multivariate rate matrices are still constrained to be scalar multiples of one 
another. Thus, the relative variances and covariances do not differ across the phylogeny, but 
regimes differ from one another by a scaling factor. In contrast, the rate-state shift models 
involve full decoupling of all parameters associated with different shift regimes: all covariances 
and variances for the evolutionary process are estimated separately for each regime. Moreover, 
under the rate-state shift models, the ancestral state for a focal clade is a parameter that is 
estimated from the data and which is fully decoupled from any state histories across earlier 
(ancestral) portions of the phylogeny.  
 
The rate-state shift model thus accommodates “jumps” in phenotypic space; similar dynamics 
have been modeled by previous studies using Lévy process models (12, 206) and by allowing 
high rates to occur on single branches (37, 207). For the rate-state shift model, we implemented 
the “censored” multi-regime Brownian motion model as described by (208); this approach is 
nothing more than a standard multi-regime Brownian motion process (119, 209) but where the 
ancestral state for each rate regime is a free parameter to be estimated separately from the data. 
The censored framework affords a number of analytical and computational advantages, 
especially for large multivariate datasets. The primary advantage arises from the fact that the 
marginal likelihood of each shift can be computed from the matrix of independent contrasts for 
the corresponding subset of taxa assigned to that regime, independently from all other taxa (and 
associated rate regimes) across the phylogeny.  
 
Note that the rate-state shift models require many more parameters than the rate shift models. 
For instance, a rate shift model for a multivariate trait with 10 substates (e.g. 10 diet categories) 
and with three shifts would have a total of 10 ancestral state parameters plus 90 variance and 
covariance parameters for the ancestral rate matrix, plus one scaling parameter for each of the 
three derived regimes (10 + 90 + 3 = 103 parameters).  However, this same trait and shift 
configuration for the rate-state shift model would have 380 parameters: 10 ancestral states plus 
90 variance and covariance terms, for each of the four regimes. Although this seems like an 
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extreme penalization for rate-state shift models, the parameter-rich rate-state shift models fit the 
observed phenotypic data better in all analyses that we performed (fig. S16).  
 
For each trait dataset, we initially fit a single-process Brownian motion model to the entire 
phylogeny. We then fitted an increasingly complex set of rate shift and rate-state shift models to 
the tree, maximizing the log-likelihood for each model. For a model with K = 1 rate shifts, we 
simply identified the branch (= shift location) giving the highest log-likelihood. However, we 
added complexity in stepwise fashion such that, for a model with K shifts, we searched for the 
shift location that best explained the data while holding fixed the locations of the previously 
identified K-1 shifts. We recognize that stepwise approaches can only identify a constrained 
subset of possible models, because the stepwise procedure itself reduces the size of the set of 
candidate models that can be considered. However, it was not feasible to implement a non-
stepwise procedure, because of the vast differences in the size of model spaces between stepwise 
and non-stepwise approaches. For a model with K shifts and M possible shift locations, the 
number of models to consider under the stepwise procedure is simply M + (M – 1) + (M – 2) + 
… (M – K + 1) = KM + K(K – 1)/2. However, the non-stepwise approach has M(M – 1)(M – 
2)...(M – K + 1) models, and thus involves a relative complexity increase on the order of MK-1. 
We also found that it was computationally infeasible to consider all possible branches across the 
phylogeny as shift locations (e.g., large M in the preceding calculations). We therefore reduced 
M by restricting the set of permissible shift locations to only those branches present in a reduced 
phylogeny that included crown representatives of each subfamily-level clade in the full squamate 
phylogeny. This reference phylogeny included 222 possible shift locations. For each dataset, we 
considered up to K = 10 shifts for both rate shift and rate-state shift models. 
 
All analyses except skull morphology used log-transformed variables; skull traits were the vector 
of Procrustes coordinates for each taxon and were thus scaled, centered, and translated prior to 
analysis. For diet, the “traits” at the tips of the tree were the multinomial distributions (tip states) 
as inferred under a Dirichlet multinomial model. Because the diet states represent proportions 
under a simplex constraint, we chose one (of 31) diet categories as a reference and normalized 
the remaining 30 categories by dividing through by the reference value. Thus, each of the 
remaining states was an index of resource utilization relative to the reference category. These 
normalized values were then log-transformed.   
 
One high-dimensional dataset (skull; 40 variables) faced additional challenges during model 
optimization. We were unable to numerically compute the log-likelihood of the data due to 
singular covariance matrix errors arising from high collinearity between some variables. We 
therefore repeated the full inference procedure on 50 random subsets of the complete dataset, in 
each case choosing 10 random variables (e.g., 10 columns of the data matrix). Importantly, 
despite some variation in numerical values of log-likelihoods and corresponding AICs (fig. S16), 
we found that the inferred shift locations were very similar across these random data subsets. 
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Figure S1: Completeness of phylogenomic data matrix. The tree shows the phylogenomic 
backbone with tips colored if they were newly collected (blue) or previously published (black). 
The locus matrix ranks loci (n = 5,180) by completeness across individuals; colors follow the 
tree. Our data matrix was fairly complete; on average, any given locus was sequenced for 75% of 
individuals. However, previously published data were less complete because they were only 
sequenced for one marker type (either anchored hybrid enrichment [AHE] or ultraconserved 
elements [UCE]). 
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Figure S2: Quality of phylogenomic data per individual as measured by (A) average number of 
loci, (B) average length of locus, (C) average coverage, and (D) average heterozygosity. High 
heterozygosity can result from contamination, DNA damage, or high levels of collapsed 
paralogs. Shown are distributions for newly collected (n = 808) and previously published data (n 
= 210; Data S1) included in our phylogenomic constraint tree. Our newly collected data were of 
high quality. On average, we collected 4,945 loci per individual at 888 bp length, and read 
coverage was 59.9x across loci. 
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Figure S3: Our primary phylogeny (6,885 species); branches constrained by our phylogenomic 
constraint are colored orange. Our phylogenomic constraint consisted of 1,018 species inferred 
for nearly 5,000 loci. Our constraint tree spanned most higher-level relationships and many 
within-family and within-generic relationships, as well.  
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Figure S4: The genomic time-calibrated tree with 5-95% divergence time distributions 
(horizontal blue bars) and fossil-calibrated nodes (circles). Fossil-calibrated node labels 
correspond to Table S1, which contains additional information on the fossils used and their 
sources. We subsampled our full phylogenomic tree to 134 tips that spanned 31 fossils, and then 
we inferred an ultrametric tree using MCMCtree. Our fossil calibrations span both the taxonomic 
and temporal breadth of the squamate tree.   
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Figure S5: Specified prior, effective prior and posterior distributions for all fossil-calibrated 
nodes. Dotted vertical lines indicate minimum and maximum (if available) fossil ages. When 
both minimum and maximum ages were available, the specified prior was defined as a uniform 
distribution with soft bounds. When maximum age was not available, the specified prior was 
defined as a log-normal distribution with soft bounds. Four replicates of the MCMCTree analysis 
were run and were strongly correlated, and each replicate is shown as a separate posterior 
distribution.  
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Figure S6: Calibration strategy for our genetic tree (6,885 species). To account for potential 
molecular clock heterogeneity, we time-calibrated seven clades of the full tree separately using 
TreePL and then merged those ultrametric trees together. Clades outlined in red were 
independently time-calibrated, and the best-fit treePL smoothing parameter is shown in 
parentheses. Dark purple branches show the phylogeny of major clades that was also time-
calibrated separately for the purpose of merging the major clades. Nodes with secondary 
calibrations (as inferred with MCMCtree on a subsampled phylogenomic alignment) are 
indicated with blue circles at nodes.   



 
 

36 
 

 
 
Figure S7. Evolutionary dynamics of four of the major traits, presented as absolute, branch-
specific change along individual branches (e.g., absolute step change). Here, branches have been 
rescaled to the absolute amount of change that is inferred to have occurred between a node and 
its descendant nodes, under Brownian motion. We see that in all cases a great degree of change 
has occurred near the origin of snakes. Within snakes, there is also a large amount of change, as 
can be seen by the relatively long branches within the group, as compared to lizards.  
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Figure S8: Phylogenetic structure of additional primary traits (see Table S2). Weighted averages 
of the traits are shown alongside a phylogeny reduced to 250 representative taxa, evenly sampled 
from the tree tips; a full phylogeny showing all taxa is shown in fig. S10. Squamates capture a 
wide range of trait diversity, and closely related clades often differ substantially for a given trait. 
Node labels are defined as in Figure 1 of the main text. Note that this figure presents trait values, 
rather than rates, and is thus distinct from the information shown in Fig. 1.  
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Figure S9: Phylogenetic structure of secondary and biogeographic traits (see Table S2). See 
Figure S8 caption above for figure details. Parity shows percentage of taxa that are viviparous. 
Prehension mechanism shows percentage of taxa that use lingual or both lingual and jaw 
prehension. Foraging mode shows percentage of taxa that exhibit active, herbivorous or mixed 
foraging (e.g., not ambush predators). Skull kinesis shows the average of the combined ordinal 
ranking. Node labels are defined as in Figure 1 of the main text. 
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Figure S10: Species-level phylogenetic structure for ecomorphological traits. The tree and data 
are not subsampled or averaged. Squamate species capture a wide range of trait diversity, and 
closely related species often differ substantially for a given trait. Much of this diversity is 
captured in the Serpentes clade (snakes), which exhibits elevated rates of net innovation (𝛹), 
trait evolution (𝑇𝑅), and speciation (𝜆CLaDS) relative to the rest of squamates. Node labels are 
defined as in Figure 1 of the main text. 
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Figure S11. Distributions of snakes (red) and non-snake lizards (blue) for elongation index (A, 
D), presacral vertebrae count (B, E) and skull shape (C, F). Top row shows trait values; bottom 
row shows rates of trait evolution. Snakes and lizards show largely non-overlapping distributions 
for many trait values and rates, with snakes exhibiting higher rates of trait evolution than lizards. 
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Figure S12: Relationship between the elongation index (as derived from SVL and mass) and the 
number of presacral vertebrae. Snakes exhibit greater elongation and greater vertebral counts, but 
also great variance in this relationship, relative to non-snake lizards. The increased variance in 
this relationship is consistent with our estimates of faster evolutionary rates for both of these 
traits (Fig. 1), and for a large jump in phenotype along the branch leading to extant snakes (Fig. 
2, fig. S15).  
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Figure S13:  Distribution of non-snake lizards (blue) and snakes (red) for log10-transformed (A) 
body mass and (B) its associated tip rate. Squamates as a whole exhibit a large range in body 
mass, and lizards and snakes overlap in body mass considerably. Snakes exhibit a slightly faster 
rate of body size evolution as defined by body mass. 
  



 
 

43 
 

 
 
Figure S14: Variance partitioning for diversification rates and main ecomorphological traits 
evaluated in this study. For each trait, we identified (using an unsupervised approach) 
phylogenetic partitions (or clades) that explain a significant proportion of the variance in species 
phenotypes. Plots show how the percent of total variance increases with an increasing number of 
phylogenetic partitions. Partitions are colored blue for non-snake lizard nodes and red for snake 
nodes. For all traits but climatic niche, a deep node in snakes explains the most variance in traits.   
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Figure S15: Variance partitioning across six primary traits, their innovation indices, and rate 
estimates (as shown in Figure 1). For each trait, and for each node, we calculated the R2 
explained by splitting the tree into two partitions at that node. Tree branch lengths reflect nodal 
R2 values, and all trees are shown on the same scale. Gray branches show all non-snake lizards; 
blue (Colubriformes) and orange (non-Colubriformes) branches show snakes. For some traits 
like climate, trait values are so phylogenetically labile that any one clade explains only a 
negligible proportion of the total trait variation. However, for most other traits, creating just a 
single partition between snakes and all other squamates explains a significant amount of the 
variation in a trait (>80%). 
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Figure S16: Comparison of different models of evolution and different numbers of phylogenetic 
rate partitions for the main ecomorphological traits evaluated in this study: (A) mass, (B) 
elongation index, (C) presacral vertebrae, (D) multivariate skull shape, (E) multivariate climate, 
and (F) multivariate diet composition. Models include a base single-partition tree-wide Brownian 
motion (BM) model, a rate shift BM model (covariances and variances scalar multiples of the 
base) with increasing numbers of partitions, and a rate-state shift model fully decoupled BM 
model with separate means and covariance terms. The skull shape dataset (D) consisted of 40 
Procrustes-transformed variables, so we repeated the model fitting procedure 50 times with a 
random subset of 10 skull shape variables each time. Across these traits, the fully decoupled 
model is always a better fit than the rate-shift only model. Further, adding additional rate 
partitions typically improved the fit of the model as measured by Akaike Information Criterion 
(AIC), but the biggest improvement typically came from the first partition. For all traits but 
multivariate climate (E), this partition occurred at the root of snakes or within a deep node in 
snakes (see Figure 2 for location of partitions). 
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Figure S17: For multivariate diet, we fit a further round of censored models to diet states 
inferred using a non-phylogenetic Dirichlet process mixture model (see Section 2.2.6.3). Model 
fits and AIC improvement are shown for the full dataset (left), for the principal components 
accounting for 95% of variance (middle), and for 10 random subsets of 15 diet variables (right). 
In all cases, similar to what is seen for the phylogenetically informed approach, the node 
partition that most improved model fit occurred at the most recent common ancestor of 
alethinophidian snakes. 
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Figure S18: Squamate diet principal component analysis (PCA) predictor loadings. Loadings for 
PC axes 1 and 2 are shown, corresponding to Figure 3 in the main text. Bar colors show the 
relative use of these dietary categories by non-snake lizards and snakes, calculated as the 
summed proportions across species. Snakes have evolved to feed on a number of prey (e.g., 
mammals, other snakes, and birds) that are not found in the diets of lizards. 
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Figure S19: Squamate diet principal component analysis (PCA), focusing on PC axes 3 and 4. 
Points represent species and have been rescaled to reflect relative dietary breadth (A). PC 
loadings (B) have been colored to reflect the relative usage of each dietary category by non-
snake lizards and snakes. Patterns across diet PC 1 and 2 (Fig. 3, fig. S18) are similar to those 
seen for PC axes 3 and 4: snakes (as a whole) occupy a broader dietary space than lizards but 
individual snake species tend to have narrower dietary breadth than that of individual lizard 
species.  
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Figure S20:  Variance partitioning of diet proportions across all squamates (A, B) and with 
lizards only (no snakes) (C, D). Present-day squamate diets are thought to reflect major trophic 
shifts that occurred deep in the evolutionary history of the group (the “Deep History” hypothesis 
in squamate diets; (7, 24)). However, we find that the single most important node for explaining 
tip variance in diet proportions corresponds to advanced snakes, explaining almost 40% of the 
variance. This node explains far more of the variance than any nodes outside of snakes, thereby 
dwarfing the trophic shifts considered for the Deep History hypothesis. The most important node 
in explaining variance in lizard diets corresponds to Iguanidae (C, D), a group of primarily 
herbivorous species. The overall variance explained across diet proportions increases with the 
inclusion of additional nodes, which are colored in accordance with the region of the tree they 
belong to. Numbers in the variance plots correspond to node numbers on the phylogenies.  
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Figure S21: Climate space occupied by snakes and non-snake lizards. A principal component 
analysis (PCA) was conducted on climate data sampled at 10,000 locations across landmasses of 
the world; these background points are shown in gray. For climate data, we used 19 bioclimatic 
variables, climatic moisture index and net primary productivity (168, 170). We then determined 
which of these coordinates intersected with the geographic ranges of lizards and snakes (10) and 
projected the climate occupied by these species onto this climate PCA space. Lizards and snakes 
both occupy nearly the same range of diverse climates, suggesting that neither group exhibits 
broad-scale climate conservatism. 
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Figure S22: Family-level occupation of global biomes and geographic realms (210). Bolyeridae 
is not associated with any biome or realm because it consists of only a single species found on a 
single island (Mauritius). Most squamate families (which range in size from one to 1,967 
species) are found across multiple biomes and multiple geographic realms, suggesting that even 
closely related squamate species can survive across quite different climatic conditions and that 
climate niche conservatism rarely persists across broad phylogenetic scales. 
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Figure S23: Proportion of species in each squamate family represented in our phylogeny by 
either phylogenomic data, GenBank-scraped data, or imputed. Shown is our primary phylogeny 
subsampled to show only one tip per family. Fifty-one of the 68 families were represented by at 
least one phylogenomic individual; sixty-four of the 68 families were represented by at least one 
GenBank individual. All families were sampled for either phylogenomic or GenBank data. 
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Figure S24: (a) Variation in BAMM speciation rates across the squamate tree. (b) Summary of 
BAMM speciation rates for clades of interest. (c) The relationship between BAMM speciation 
rates and species-specific elongation indices. (d) R2 values for phylogenetic regression models 
with BAMM speciation rates as the response. Our primary results are robust to the approach used 
to estimate speciation rate (CLaDS versus BAMM; Fig. 4): snakes show elevated rates of 
speciation relative to non-snake lizards and no trait in our dataset appears to explain speciation 
rate variation after large clade effects (e.g., snakes) are accounted for.  
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Figure S25: Results of main analyses repeated across the 100 trees in our pseudo-posterior set. 
(A) The ratio of trait rate evolution in snakes versus lizards across the tree distribution. Value 
from our primary tree shown by the red line. (B) The ratio of trait innovation in snakes versus 
lizards across the tree distribution. Value from our primary tree shown by the red line. For both 
(A) and (B), diet composition was estimated using Bayesian hierarchical clustering, a non-
phylogenetic approach. Values here thus differ slightly from those reported in the main text. (C) 
Location of trait shifts in the lizard and snake phylogeny, as inferred using canonical 
phylogenetic ordination. Blue branches are lizards; red branches are Scolecophidia (blind 
snakes); orange branches are Alethinophidia (non-blind snakes). Circles at nodes are sized by the 
proportion of variance they explain, and numbers reflect the number of trees (out of 100) in 
which that node was inferred as the most explanatory node. (D) Ratio of snake to non-snake 
lizard tip speciation rates, computed across imputations of the pseudo-posterior set using CLaDS. 
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Value from our primary tree shown by the red line. (E) Phylogenetic adjusted R2 estimated using 
phylogenetically corrected linear regression of predictor traits against speciation rates (see Table 
S3). Our results that (1) net innovation and rate of trait evolution were higher in snakes than 
lizards, (2) the primary shift in trait state and rate occurred at the base of snakes (or very near to 
it), (3) snakes had higher tip speciation rates than lizards, and (4) no model explains speciation 
rate variation seen across lizards and snakes are robust to the phylogenetic uncertainty captured 
by our pseudo-posterior set of trees. 
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Figure S26: Cohort analysis of speciation rate variation (BAMM) across the squamate 
phylogeny, showing pairwise probabilities that any two clades share an identical rate regime by 
virtue of shared evolutionary history. The BAMM analysis was conducted on the primary tree of 
6,885 species. For visual clarity, we proportionally subsampled the tree to 150 regularly sampled 
taxa. Notable clades of interest are indicated with numbered nodes. The so-called “advanced 
snakes” – Colubriformes (node 3) – exhibit speciation dynamics that are fully decoupled from all 
other squamate lineages, with rates that are over two-fold higher than those across other 
squamates (Fig. 4D).  
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Figure S27: Correlations between log-transformed speciation rate as estimated with CLaDS 
(𝜆CLaDS) and (A) skull shape (skull PC1), (B) number of presacral vertebrae, (C) elongation 
index, and (D) diet composition PC1. The visually apparent correlations between species traits 
and speciation are almost entirely driven by a single phylogenetic contrast: the split between 
non-snake lizards (in blue) and snakes (in red).  
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Figure S28: Relationship between species richness, speciation rates and latitudes. (A) 
Latitudinal ranges for all species represented in the phylogeny. Warmer colors denote species 
with greater speciation rates as estimated by CLaDS. (B) The latitudinal diversity gradient in 
species richness for lizards and snakes. (C) The latitudinal gradient in speciation rates for lizards 
and snakes. (D) The relationship between species richness and speciation rates across latitudinal 
bins. For B, C and D, species were assigned to latitudinal bins in 1-degree increments, according 
to their minimum and maximum latitudinal extent. For C & D, only latitudinal bins with five or 
more species are shown. Although we recapitulate previous support for a Latitudinal Diversity 
Gradient in species richness in squamates (211, 212), we find no evidence that this pattern results 
from a latitudinal gradient in speciation rate. Much of the peak in lizard speciation rate in the 
southern hemisphere is driven by high speciation rates in the genus Liolaemus (Fig. 4D, fig. 
S24).  
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Figure S29: Comparison of snake vs non-snake lizard speciation rates for species found in a 
given biogeographic region (excluding sea snakes). If species geographic ranges spanned 
multiple biogeographic regions, they were included in each. Note that no snake species are found 
in New Zealand. Snakes exhibit higher speciation rates than lizards across all biogeographic 
regions, suggesting faster speciation rates in snakes is not a biome-specific phenomenon. 
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Figure S30: Number of phylogenomic taxa included in our phylogenomic pipeline newly-
collected in this study and published previously in other studies (Data S1). Sampled individuals 
were removed either if their sequencing quality was low quality, if they had high missing data, or 
if they were identified as rogue taxa by RogueNaRok. In total, we sampled 1,083 ingroup taxa, 
of which 1,018 could be used in our constraint tree. Some taxa could not be included in our 
constraint tree because there were too few taxa in that family (nTaxa < 3) to generate a constraint 
topology. 
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Figure S31: Comparison of our phylogenomic topology inferred with different approaches. Our 
primary phylogenomic topology was inferred using concatenated data with IQTree. Shown here 
is how this topology (depicted on the left) compares to that generated (A) by a coalescent-based 
approach (ASTRAL) and (B) by another concatenated approach (ExaML). Trees were 
subsampled to subfamily level for ease of visualization. Red nodes are discordant between the 
visualized tree and the IQTree tree. While the two concatenated approaches are largely 
concordant, the coalescent-based topology is quite different from the concatenated topology. 
Many of the discordances are in disagreement with existing notions of squamate evolutionary 
relationships – gleaned from decades of analysis of both molecular and morphological data – 
suggesting that the coalescent-based approach might be exhibiting unexpected behavior. 
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Figure S32: Our phylogenomic tree and its bootstraps, as inferred using IQTree2. Only thirteen 
nodes (1.1% of total nodes) had less than 100 bootstrap support; these nodes are labeled with red 
circles. Overall, our phylogenomic tree had strong nodal support as measured by bootstraps, 
however, nodes with high genealogical discordance can still exhibit strong statistical support 
with phylogenomic datasets (50, 71, 76). 
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Figure S33: Levels of gene tree support and conflict across our phylogenomic tree, subsampled 
to the subfamily level. We measured gene tree support and conflict using PhyParts (77) on rooted 
gene trees, filtering out any gene tree nodes with <20% support as measured by Shimodaira-
Hasegawa-like values. Many nodes exhibit high levels of gene tree discordance despite also 
having high bootstrap support. Discordance is particularly high in the rapid snake and iguanid 
radiations (50, 71).  
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Figure S34: Supermatrix alignment used to construct our squamate phylogeny of 6,885 species. 
The left panel shows our primary phylogenetic tree, with tips in our phylogenomic constraint 
shown in orange. The right panel shows our supermatrix of 56 loci, with loci ranked in 
increasing order of completeness. Blue cells represent mitochondrial loci, and orange and green 
cells represent newly collected phylogenomic and GenBank-scraped loci, respectively. Like most 
supermatrices, our supermatrix is patchy but the inclusion of newly collected data substantially 
increases its completeness. 
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Figure S35: Topological differences between our constrained and unconstrained phylogenetic 
analyses. In our constrained analysis, the 6,885-taxon supermatrix was constrained by a 
phylogenomic backbone (fig. S3). In the unconstrained analysis, no constraint was placed. Left: 
the genus-level constrained and dated phylogeny; red nodes (12% of total nodes) are discordant 
between the constrained and unconstrained trees. Right: a family-level comparison of 
constrained and unconstrained trees. Overall, the two trees are highly concordant, outside of 
discrepancies in two known areas of high discordance in squamates: relationships within Iguania 
and among gecko families. 
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Figure S36: Differences in speciation rate (𝜆CLaDS) as measured on a fully sampled, imputed tree 
versus a genetic-only tree with sampling fractions. For our primary tree, we generated 100 
imputations to account for uncertainty in imputation. Additionally, we ran CLaDS on a genetic-
only tree with family-level sampling fractions. (A) Average correlation between speciation rate 
across the two approaches was relatively high (mean correlation = 0.91 across 100 imputations) 
but (B) lower than the correlation across imputations (mean correlation = 0.96). Shown here is a 
randomly selected sample of two imputations. (C) Average difference between the two 
approaches (measured as 1"234567	.	19:23;"$<	=>:?5"@$

	1"234567
) did not vary predictably with the 

percentage of the family that consisted of imputed tips. These results suggest that, although 
imputation introduces error, inferring speciation rate on an imputed tree results in more 
consistent rates than approaches accounting for missing data. 
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Figure S37: Topological and divergence time variation across our pseudo-posterior set of trees. 
We generated 100 trees to capture uncertainty in topology and divergence dating; these trees 
serve as our pseudo-posterior set of trees. Nodes representing major squamate clades are labeled 
with letters; see Table S5 for codings. Shown is our primary tree, subsampled to one random 
representative per subfamily, with error bars on divergence times. Nodes that appear in <95% of 
the pseudo-posterior set of trees are marked with a red circle. 
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Figure S38: Data content of our phylogenetic tree (red) and fourteen other squamate phylogenies 
(gray) published in the last 20 years: (20, 50, 54, 69, 71, 83, 93, 108, 118, 123–127). (A) Number 
of species sampled for phylogenomic data and number of loci included in the phylogenomic 
alignment. (B) Number of species sampled for genetic data (e.g., non-phylogenomic datasets) 
and number of loci included in this alignment. (C) In a given phylogeny, the number of species 
sequenced for phylogenomic vs. genetic datasets.  Relative to other trees, our phylogeny spans 
more species (whether for genetic and genomic data) and almost always more loci (whether for 
genetic or genomic data). While more data do not automatically imply greater accuracy, our 
phylogeny remains the most comprehensive squamate phylogeny published to date.  
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Figure S39:  Topological differences between our primary phylogeny and previously published 
topologies: (A) the 5,415-tip tree published by (83) and (B) the 289-tip phylogenomic tree 
published by (71). (A) left: genus-level phylogeny inferred in our study; red nodes (38% of total 
nodes) are discordant between our and the (83) tree. Right: a family-level comparison between 
our and the (83) tree. (B) left: our phylogeny showing all tips also sampled by (71); red nodes 
(18% of total nodes) are discordant between the two trees. Right: a family-level comparison 
between our and the (71) tree. Family-level relationships are highly concordant across the three 
trees, outside of a few discrepancies within Iguania. Below-family relationships are highly 
concordant across the two phylogenomic phylogenies, outside of discrepancies in two known 
“anomaly zones” in squamates: Iguania and advanced snakes (50). 
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Figure S40: A comparison of major squamate clades between the time-calibrated genomic 
phylogeny from this study to three recently published phylogenies (71, 83, 127). All trees are 
plotted on the same chronological scale, and equivalent nodes are linked together. Node numbers 
correspond to the following crown clades: (1) Squamata, (2) Gekkota, (3) Scincoidea, (4) 
Lacertoidea, (5) Anguimorpha, (6) Iguania, (7) Serpentes. Note that Anguimorpha is not defined 
in (127). There is some variation in clade age across these trees, most notably for Gekkota and 
Serpentes in (127), compared to the other squamate phylogenies.  
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Figure S41: A comparison of family crown ages across the phylogenies also shown in figure 
S40 (71, 83, 127). Pearson correlation coefficients are reported in the lower right corner. We find 
that family crown ages are highly congruent, with the tree in this study being most aligned with 
Burbrink et al. (71).  
  



 
 

72 
 

 
 
Figure S42: Cross-validation analysis of size ratio imputation for snakes. We estimated the 
proportional error in imputed size ratio when either SVL and total length, or actual size ratio, 
were known (1,112 snake species), using leave-one-out cross-validation. Proportional error, with 
mean = 1 and sd = 0.07, indicates that the imputation procedure is relatively accurate, as a value 
of 1 implies perfect accuracy. Note that we used phylogenetic imputation to estimate size ratios 
for 982 of 2,094 snake species where the size ratio was unknown (either SVL, total length, or 
both were missing for individual species; see section 2.2.2). 
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Figure S43: Speciation rates across the squamate tree measured using three methods: CLaDS, 
BAMM, and the DR statistic. Points are colored red for snakes and blue for non-snake lizards. 
Despite the differing assumptions of these methods, speciation rates are highly correlated across 
approaches, and we draw similar conclusions irrespective of which method is used (see fig. S24). 
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Figure S44: Simulation-based evaluation of the multivariate tip rate metric for trait evolution. 
Tip rates are computed from a set of multivariate, multirate discrete-shift simulations on the full 
squamate phylogeny. (A) A comparison of all simulated to estimated tip rates. The datasets 
involved between 0 and 10 phenotypic rate shifts, simulated on the empirical squamate 
phylogeny. Nodes needed to include at least five descendant tips to be considered for a rate shift, 
and all trait datasets had five dimensions. (B) A comparison of simulated to estimated tip rates, 
when rates are averaged by true rate regime. (C) Mean proportional error for estimated tip rates, 
organized by rate regime size. Mean proportional error is defined as: sum( ((estimated - true) / 
true) ) / regime size. 12 (out of 659) outlier values are not shown in the interest of visualizing the 
majority of the data. (D) Root mean square error for estimated tip rates, organized by number of 
simulated rate shifts. Colors in panels (A) and (B) reflect point density. 
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Table S1: List of fossils for node-based divergence time estimation. Ages are in millions of 
years, and node labels correspond to figure S4.  
 
fossil min age 

constrai
nt 

max age 
constrai

nt 

group references node 
label 

Hylonomus lyelli 314 340 Amniota (213) C1 

Protorosaurus 
speneri 

255.9 295.9 Sauria (214) C2 

Xilousuchus 
sapingensis 

247.2 256 Archosauria (215) C3 

Paramacellodidae 170  Scincoidea (216) C4 

Dorsetisaurus 
purbeckensis 

144  crown Anguimorpha (92, 217–220) C5 

Primaderma nessovi 98.32  Heloderma+ 
Anguis+Anniella+ 

Xenosaurus 

(90–94) C6 

Saichangurvel 
davidsoni 

68  Pleurodonta (221) C7 

Cretaceogekko 
burmae 

97  crown Gekkota (222, 223) C8 

Ptilotodon wilsoni 112  Teiidae (224) C9 

Boipeba tayasuensis 66  Typhlopoid- 
leptotyphlopid 

divergence 

(225) C10 

Afairiguana avius 49.1  Anolis+ 
Gambelia 

(95, 226) C11 

Odaxosaurus 
roosevelti 

74.5  Anguidae (98, 227) C12 

Australophis 
anilioides 

72.1  Amerophidia 
(Aniliidae+ 

Tropidophiidae) 

(228) C13 

Procerophis sahnii 50.5 72.1 Colubroidea+ 
(Acrochordus+ 

(229) C14 
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Xenodermatidae) 

Messelopython freyi 47.57  stem Pythonidae (230) C15 

Titanoboa 
cerrejonensis 

58 64 stem Boinae (228) C16 

Saniwa ensidens 51.4  Varanus+ 
Lanthanotus 

(231) C17 

Corallus priscus 50.2 64 Corallus+ 
(Chilobothrus+ 

Epicrates+ 
Eunectes) 

(228) C18 

Calamagras weigeli 35.2  Ungaliophiinae+ 
Charininae 

(228) C19 

Geiseltaliellus 
maarius 

47  Corytophanes+ 
Basiliscus 

(232, 233) C20 

Ophisaurus sp. 33  Anguinae (90) C21 

unnamed 18.7  Charina+Lichanura (228) C22 

Vipera aspis complex 20 23.8 Crotalinae+ 
Viperinae 

(229) C23 

Egernia gillespieae 14.8  Egernia (234) C24 

Natrix aff. 
longivertebrata 

13.8  crown Natricidae (84, 235) C25 

Paleheterodon tiheni 12.08  Heterodon+ 
Farancia 

(229) C26 

Crotalinae gen. & sp. 
indet. A 

11.2  stem Crotalinae (84, 236) C27 

Morelia 
riversleighensis 

13  Morelia+Liasis (228) C28 

Bungarus sp. 10.215  genus Bungarus (229) C29 

Incongruelaps 
iteratus 

10  Laticauda+ 
Oxyuraninae 

(229) C30 

Pantherophis sp. 11.93  Pantherophis+ 
Pituophis 

(229) C31 
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Table S2: Ecological, morphological, environmental, and biogeographic variables considered in 
this study. Sample size (n) reflects the number of species for which the trait was measured that 
are also represented in our genetic phylogeny of 6,885 species. Traits were grouped into four 
different categories: primary traits, secondary traits (type 1), secondary traits (type 2), and 
biogeographic traits. See Section 2.1 for more details on these categories. All traits listed below 
were considered as predictors of speciation rate variation in squamate evolution (see Table S3). 
We define primary traits as those that have a well-defined distance metric associated with 
character state differences (e.g., excludes categorical data) and where trait values for individual 
species are not simply averaged or generalized state assignments applied to entire clades. For 
example, foraging mode and cranial kinesis are classic traits in squamate biology but available 
summaries typically assign entire clades (e.g, snakes) to a single state (“highly kinetic”) while 
masking extensive within-clade variation. These traits are considered secondary traits (type 2). 
Primary traits also excluded numbers of digits and numbers of limbs, because variation in these 
traits does not generally correlate with species-level environmental or ecological diversity; 
rather, variation in those traits typically reflects intermediate stages of an evolutionary sequence 
leading to body elongation and complete limb loss. These traits are considered secondary traits 
(type 1). Net innovation (𝜓) and evolutionary rates (TR) were estimated for primary traits only 
(highlighted in yellow), due to concerns about data quality/completeness and non-metric 
properties of secondary traits. 
 

Trait 
categories Trait type trait n description 

Primary traits 

morphological 

mass 6,692 Estimated maximum body mass of adult 
individuals 

Snout-vent length 6,692 Length of adult individual from snout (or tip of 
rostrum) to vent (cloacal slit) 

Elongation index 6,692 Index of body elongation: ratio of length to width 

Number of presacral 
vertebrae 2,116 Number of vertebral elements anterior to sacrum 

multivariate skull 
shape 268 

40 Procrustes transformed coordinates describing 
skull shape from 2D lateral images; used to infer 

skull PC1 & 2 

environmental Multivariate climate 
space 6,387 

Average values across the range for 19 
bioclimatic variables, net primary productivity 

and climatic moisture index; used to infer climate 
PC1 - 6 

 
ecological 

Chemosensory index 6,872 

Sum of derived character states for nine 
morphological traits associated with 

chemoreception; higher values of index denote 
increased chemosensory ability 

multivariate diet 1,314 

Model-inferred multivariate dietary niche; 
frequency distribution across 31 taxonomic 
resource categories (Section 2.2.6). These 

variables were also used to infer diet PC1 & 2 
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Diet breadth 1,314 Degree of dietary specialization, calculated from 
inferred multivariate niche estimates 

Secondary 
traits, type 1 morphological 

Number of digits 6,884 Summed total of digits on hindlimbs and 
forelimbs on one side of individual (zero to ten) 

Number of limbs 6,884 Hindlimb plus forelimb total on one side (0, 1, 2) 

Secondary 
traits, type 2 

Morphological 
Skull kinesis type 6,885 Akinetic, mesokinesis, metakinesis, hypokinesis, 

or hyperkinetic 

Prehension 
mechanism 6,885 How prey are captured – jaw, lingual, or both 

Ecological 

parity 5,369 Oviparous (laying eggs), viviparous (birthing live 
young), mixed 

Foraging mode 6,699 
Active (movement through habitat to find prey), 
ambush (individual waits for prey to approach), 

herbivore, mixed 

Biogeographic 
traits 

 
 

Latitude 6,393 Latitude of species range centroid 

elevation 6,393 Average elevation across a species range 
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Table S3: Explanatory power of 11 different sets of predictor traits on speciation rate variation 
across squamates. Traits were grouped together by type to create multivariate models. For each 
model, we ran a phylogenetically corrected linear regression of predictor traits against speciation 
rate, as estimated by CLaDS (𝜆CLaDS) or BAMM (𝜆BAMM). We additionally ran a phylogenetic 
regression that uses time-calibrated branch lengths in the model. Shown are the sample size – or, 
number of included species – and the explanatory power of each model, as measured by R2. All 
species whose phylogenetic placement were imputed were dropped prior to regression. Although 
some predictor traits are statistically significant, they explain a very minimal amount of 
speciation rate variation. Our best model only explains ~2% of the variation in speciation rate. 
 

model n Predictor traits adj. R2  
(𝜆CLaDS) 

adj. R2  
(𝜆BAMM) 

adj. R2  
(𝜆CLaDS) - 
br. len. 
model 

skull kinesis 6,884 Kinesis type, prehension 
mechanism 0.009 0.022 0 

parity mode 5,368 Parity type 0.004 0.007 0.005 

chemosensor
y 6,871 chem (Chemosensory index) 0.002 0.004 0 

climate 6,386 climate PC1 & climate PC2 0.001 0.001 0 

foraging 
mode 6,698 Foraging mode 0 0.012 0 

body 
size/shape 6,691 Log mass, log snout-vent length, 

log elongation index 0 0.001 0.001 

digit/limb 
count 6,883 num. of digits, num. of limbs 0 0 0 

geography 6,392 Latitude (range center), elevation 0 0 0 

skull shape 267 Skull PC1 and skull PC2 -0.007 -0.002 -0.002 

diet 1,313 
Diet composition (PC1), Diet 
composition (PC2), log diet 

breadth 
-0.001 0.001 0.005 

vertebral 
count 1,957 num. of presacral vertebrae 0 0 0.001 
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Table S4: Nine of the anchored hybrid enrichment (AHE) loci are identical to genes commonly 
used in squamate phylogenetics (54). Our target phylogenomic loci included 38 other genes that 
have been commonly used in squamate phylogenetics – i.e., RAG2, cmos, and R35 (51). For 
these 47 genes, we were able to combine previously sequenced data available on GenBank with 
our internal phylogenomic alignments. 
 
AHE locus Corresponding gene name 

AHE-L50 MSH6 

AHE-L60 ZEB2 

AHE-L113 GHSR 

AHE-L183 DLL1 

AHE-L203 VCPIP1 

AHE-L259 RAG1 

AHE-L288 CAND1 

AHE-L309 SLC8A3 

AHE-L381 ADNP 
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Table S5: Divergence times for key crown groups in squamate evolutionary history. Shown are 
clade names, the node they map to in fig. S37, their median & 95% HPD as inferred for the 
phylogenomic tree (see Section 1.4.2), the median and range in the pseudo-posterior set of trees 
(fig. S37), and the geological epoch and stage associated with this node. 

node clade median  
(95% HPD) 

fossil 
con- 

straint 

full tree (pseudo-
posterior range) stage epoch 

S crown squamata 213.19 
(203.57-223.11)  213.19 

(200.36-221.84) 
Norian Upper 

Triassic 

U Unidentata 203.72 
(194.65-212.06)  203.72 

(191.89-214.1) 
Rhaetian Upper 

Triassic 

E Episquamata 188.34 
(180.52-195.88)  188.34 

(177.17-199.4) 
Pleinsbachian Lower 

Jurassic 

C Scincoidea 186.04 
(177.2-195.36) C5 186.04 

(176.94-196.28) 
Toarcian Lower 

Jurassic 

X Toxicofera 180.36  
(173.14-187.52)  180.36 

(171.39-190.53) 
Toarcian Lower 

Jurassic 

I Iguania 168.1 
(160.72-175.99)  168.1 

(158.37-179.23) 
Bathonian- 
Bajocian 

Middle 
Jurassic 

A Amphisbaenia (not in genomic time 
tree)  148.38 

(136.9-159.85) 
Tithonian Upper 

Jurassic 

F Anguiformes 144.6 
(140.97-149.03) C8 144.6 

(140.27-150.28) 
Berriasian Lower 

Cretaceous 

P Serpentes 120.31  
(114.57-126.55)  120.31 

(113.88-130.67) 
Aptian Lower 

Cretaceous 

D Scolecophidia 115.23 
(98.65-125.58)  115.23 

(98.98-132.47) 
Albian Lower 

Cretaceous 

T Teioidea 110.06 
(102.34-117.65)  110.06 

(100.79-118.62) 
Albian Lower 

Cretaceous 

G Gekkota 108.73 
(101.96-114.97) C21 108.73 

(98.46-118.26) 
Aptian Lower 

Cretaceous 

H Alethinophidia 88.91 
(84.47-93.36) C1 88.91 

(83.41-95.48) 
Coniacian Upper 

Cretaceous 

L Lacertoidea (not in genomic time 
tree)  71.68 

(53.34-89.16) 
Maastrictian Late 

Cretaceous 

M Colubriformes 47.71 
(43.43-51.32)  47.71 

(42.85-52.98) 
Lutetian- 
Ypresian 

Eocene 
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Data S1: Data for the 1,083 phylogenomic samples included in our study, of which 841 were 
newly collected and 242 were sourced from previous studies (124, 237–249). For data that were 
collected in previous studies, SRA accession is NA; please refer to the original study for data 
access. Reported is the taxonomic identity for each sample, the source of the data, the number of 
loci and their average link, and the SRA accession where raw data can be found. All newly 
collected data are available at Bioproject PRJNA918674 on NCBI. Institutional codes for 
voucher specimens with newly collected sequence data: ABTC, Australian Biological Tissue 
Collection; AMNH, American Museum of Natural History; AMS, Australian Museum, Sydney; 
ANWC, Australian National Wildlife Collection; BNHS, Bombay Natural History Society; 
BPBM, Bernice Pauahi Bishop Museum; CAS, California Academy of Sciences; CHUNB, 
Coleção Herpetológica da Universidade de Brasília; CUMV, Cornell University Museum of 
Vertebrates; FMNH, Field Museum of Natural History; KU, Biodiversity Institute - University of 
Kansas; MCZ, Museum of Comparative Zoology; MPEG, Museu Paraense "Emilio Goeldi", 
Belém; MUSM, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima; 
MVZ, Museum of Vertebrate Zoology; NTM, Museums and Art Galleries of the Northern 
Territory; NVM, Museums Victoria, Melbourne; PEM, Port Elizabeth Museum; QM, 
Queensland Museum; SAM, South Australian Museum; TAU, Tel Aviv University Zoological 
Museum; UFMT, Universidade Federal de Mato Grosso; UMMZ, University of Michigan 
Museum of Zoology; UPRM, University of Puerto Rico, Mayagüez; USNM, Smithsonian 
Institution, National Museum of Natural History; UWBM, University of Washington, Burke 
Museum of Natural History and Culture; WAM, Western Australian Museum. 
 
Data S2: Taxonomy and metadata associated with the genetic and genomic sequences used in 
our phylogenetic inference. We provide the original taxon names associated with the sequences 
(headers ncbiTaxon, ncbiTaxon_ssp and ncbiTaxonID provide the species, subspecies and NCBI 
ID’s), as well as the taxon names of our standardized taxonomy that we employ in our phylogeny 
and across all trait datasets in this study (header finalTipName). We additionally provide 
accession numbers, locus names and the sequence lengths. The sources of the sequence data are 
listed in the source field, and we also indicate whether or not the species was part of the 
taxonomic constraint we applied to the inference of the full tree.  
 
Data S3: List of constraints used in imputing taxa to create “fully sampled” phylogenies. 
Constraints were done at the generic level; 651 genera had missing species. For each genus, we 
show: constraint category (see Section 1.5 for details), spanning taxon for the constraint, number 
of species in the genus represented in our genetic phylogeny, number of missing species in the 
genus, and if the constraint defined an inclusion or exclusion for placement.  
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