Stable recombination hotspots in birds

Sonal Singhal,1,2,† Ellen M. Leffler,3,4,† Keerthi Sannareddy,3 Isaac Turner,4 Oliver Venn,4 Daniel M. Hooper,3 Alva I. Strand,1 Qiye Li,6 Brian Raney,7 Christopher N. Balakrishnan,8 Simon C. Griffith,9 Gil McVean,4 Molly Przeworski1,2,†

The DNA-binding protein PRDM9 has a critical role in specifying meiotic recombination hotspots in mice and apes, but it appears to be absent from other vertebrate species, including birds. To study the evolution and determinants of recombination in species lacking the gene that encodes PRDM9, we inferred fine-scale genetic maps from population resequencing data for two bird species: the zebra finch, Taeniopygia guttata, and the long-tailed finch, Poephila acuticauda. We found that both species have recombination hotspots, which are enriched near functional genomic elements. Unlike in mice and apes, most hotspots are shared between the two species, and their conservation seems to extend over tens of millions of years. These observations suggest that in the absence of PRDM9, recombination targets functional features that both enable access to the genome and constrain its evolution.

Although PRDM9 plays a pivotal role in controlling recombination localization in mice and apes, many species lacking PRDM9 nonetheless have hotspots (6). An artificial example is provided by Prdm9 knockout mice. Despite being sterile, they make similar numbers of DSBs as wild-type mice make, and their recombination hotspots appear to default to residual H3K4me3 mark locations, notably at promoters (10). A natural but puzzling example is provided by canids, which carry premature stop codons in PRDM9 knockouts, in dogs and in other species without PRDM9—such as the yeast Saccharomyces cerevisae and the plant Arabidopsis thaliana—hotspots tend to occur at promoters or other regions with promoter-like features (11, 13, 14).

To further explore how the absence of PRDM9 shapes the fine-scale recombination landscape and influences its evolution, we turned to birds, because an analysis of the chicken genome suggested that it may not have PRDM9 (6). We first confirmed the absence of PRDM9 across reptiles by querying the genomes of 48 species of birds, three species of crocodilians, two species of turtles, and one species of lizard for PRDM9 (18), finding that only the turtle genomes contain putative orthologs with all three PRDM9 domains (fig. S1). We also found no expression of any PRDM9-like transcripts in RNA sequencing data from testis tissue of the zebra finch (Taeniopygia guttata) (18). Given the likely absence of PRDM9 in birds, we asked: Is recombination nonetheless concentrated in hotspots in these species? If so, how quickly do the hotspots evolve? Where does recombination tend to occur in the genome? To address these questions, we generated whole-genome resequencing data for wild populations of two species of finches: the zebra finch, Taeniopygia guttata, and the long-tailed finch, Poephila acuticauda.

Fig. 1. Species tree for the finch species in this study. Species sampled were double-barred finch, zebra finch, and the two long-tailed finch subspecies. The tree was rooted with the medium ground finch and collared flycatcher (full phylogeny is shown in Fig. 4). Shown in gray are 1000 gene trees, which were used to infer the species tree (28). The pairwise divergence between species is indicated at nodes, as measured by the genome-wide average across autosomes.

1Department of Biological Sciences, Columbia University, New York, NY 10027, USA. 2Department of Systems Biology, Columbia University, New York, NY 10032, USA. 3Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. 4Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. 5Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA. 6China National Genebank, BGI-Shenzhen, Shenzhen 518083, China. 7Center for Biomolecular Science and Engineering, University of California–Santa Cruz, Santa Cruz, CA 95064, USA. 8Department of Biology, East Carolina University, Greenville, NC 27858, USA. 9Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.

*These authors contributed equally to this work. †Corresponding author. E-mail: sonal.singhal@gmail.com (S.S.); molly.przeworski@gmail.com (M.P.)
of two bird species and inferred fine-scale genetic maps from patterns of linkage disequilibrium.

Inferring fine-scale recombination maps

We sampled three species of finch in the family Estrildidae: zebra finch (*Taeniopygia guttata*; *n* = 19 wild unrelated birds and *n* = 5 birds from a domesticated nuclear family); long-tailed finch (*Poephila acuticauda*; *n* = 20, including 10 of each of two similar subspecies with average autosomal *F*st = 0.038); and, for use as an outgroup, double-barred finch (*Taeniopygia bichenovii*; *n* = 1) ([Fig. 1 and table S1 (18)]. Despite extensive incomplete lineage sorting between the species, they do not appear to have diverged with gene flow (fig. S2). Moreover, nucleotide divergence among the three finch species is similar to that among humans, chimpanzees, and gorillas, providing a well-matched comparison to apes ([Fig. 1](#) (8, 9).

We mapped reads from all individuals to the zebra finch reference genome [1 Gb assembled](#1 Gb assembled) and generated de novo single-nucleotide polymorphism (SNP) calls for all three species. After filtering for quality, we identified 44.6 million SNPs in the zebra finch, 26.2 million SNPs in the long-tailed finch, and 3.0 million SNPs in the double-barred finch ([table S2](#) (18)]. These SNP numbers correspond to autosomal nucleotide diversities of *π* = 0.82% and *θ*ν = 1.37% in the zebra finch and *π* = 0.55% and *θ*ν = 0.73% in the long-tailed finch, about 10 times higher than estimates in apes (20). Assuming a mutation rate per base pair per generation of 7 × 10−8 (18), these diversity levels suggest a long-term effective population size (*N*_e) of 4.8 × 10⁶ and 2.5 × 10⁶ for the zebra finch and long-tailed finch, respectively. Thus, these two species have much larger *N*_e than most other species for which there exist fine-scale recombination maps, with *N*_e being more reflective of biodiversity at large ([fig. S3](#)).

Next, we inferred haplotypes for the zebra finch and long-tailed finch, using a linkage-disequilibrium approach that incorporated phase-informative reads and family phasing. From the haplotypes, we estimated fine-scale recombination maps using the program LDhelmet, which works well for species with higher nucleotide diversity (15). The resulting maps estimated median recombination rates in the zebra finch and long-tailed finch genomes as *ρ* = 262/kb and 14.0/kb, respectively, which corresponds to a median rate of 0.14 centimorgans (cM)/Mb in both species (18). Simulations indicated that we had limited power to identify hotspots in regions with high recombination rates (fig. S4), so we restricted our analyses to the 18 largest chromosomes in the reference genome (930 Mb; 91% of the assembled genome). For these 18 chromosomes, our results accord well with recombination maps inferred from a more limited pedigree-based study of zebra finch (21), with a correlation of 0.90 for rates estimated at the 5-Mb scale ([fig. S5](#)), providing confidence in our rate inferences.

Hotspots and their evolution

To identify hotspots in the genome, we operationally defined them as regions that are at least 2 kb in length; have at least five times the background recombination rate as estimated across the 80 kb of sequence surrounding the region; and are statistically supported as hotspots by a likelihood ratio test (16). This approach yielded 3949 hotspots in the zebra finch genome and 4833 hotspots in the long-tailed finch genome ([fig. 2](#) and [figs. S6 and S7](#)), with one hotspot detected on average every 215 and 179 kb in the two species, respectively. Both the lower density of hotspots in the zebra finch relative to the long-tailed finch and the lower density of hotspots in the finches relative to humans are consistent with simulations that indicate decreased power to detect hotspots when the background recombination rate is higher ([figs. S4 and S8 (18)]. The hotspots were detected after aggressively filtering our SNP data sets and show no evidence of having higher phasing error rates than the rest of the genome ([fig. S9 and tables S3 and S4](#)). Considering hotspots to be shared if their midpoints occur within 3 kb of each other, 73% of zebra finch hotspots (2874 of 3949 hotspots) were detected as shared between the two species ([fig. S10](#)) when only 4.4% were expected to overlap by chance ([figs. S10 and S11](#)); similar results were obtained under different criteria for hotspot sharing ([table S5](#)). The true fraction of shared hotspots between the zebra finch and long-tailed finch is probably higher than observed, because we do not have complete statistical power ([fig. S4](#)) and because simulations suggest that we are unlikely to detect spurious cases of hotspot sharing (16). On the other hand, the observed levels of sharing are somewhat lower than expected, compared with a model in which all hotspots are identical in the two species ([fig. S12](#)).

This conservation of hotspots contrasts sharply with comparative analyses in apes and mice, where, even across populations with modest levels of genetic differentiation, there is no hotspot sharing (8–10). In fact, if we apply the same criterion for hotspot sharing to humans and chimpanzees, only 10.5% of chimpanzee hotspots overlap.
with human hotspots when a 7.2% overlap is expected by chance (fig. S11).

To provide further support for the validity of the inferred hotspots, we tested whether they show evidence for GC-biased gene conversion (gBGC), measured as higher expected equilibrium levels of GC content (GC*) (18). Because evidence for gBGC in birds is somewhat indirect (22), we first looked for support for gBGC at broad genomic scales, finding a positive relationship between recombination rate and GC* (Fig. 3, A and B). Narrowing our focus to the regions surrounding hotspots, we observed that hotspots exhibited peaks GC* relative to both flanking sequences and “coldspots” (regions without peaks in recombination) matched for the same overall GC and CpG content (Fig. 4, A and B). A similar phenomenon is evident in intraspecies variation data: At hotspots but not at matched coldspots, derived alleles segregate at a higher frequency at AT-to-GC polymorphisms than at GC-to-AT polymorphisms (fig. S13). Thus, two independent signatures of recombination—namely, patterns of linkage disequilibrium and of base composition—converge in demonstrating that finches have recombination hotspots and that these are conserved over much longer time scales than in apes and mice (8–10).

After observing the pattern of gBGC at hotspots in the zebra finch and long-tailed finch genomes, we tested how far the conservation of hotspot locations extends across the avian phylogeny by additionally considering the genomes of the double-barred finch [an estimated ~3.5 million years diverged from the zebra finch (18)], medium ground finch Geospiza fortis [~15.5 million years diverged from the zebra finch (23)], and collared flycatcher Ficedula albicollis [~19.1 million years diverged from the zebra finch (24)]. Because we only had a single diploid genome from these species, we tested for hotspot conservation indirectly by determining whether these species had peaks in GC* at the hotspot locations that we had inferred to be shared between the zebra finch and long-tailed finch. We found localized GC* peaks at hotspots in all three species (Fig. 4, C to E), suggesting that the conservation of hotspots extends across tens of millions of years of evolution. These findings mirror those obtained from four species of Saccharomyces yeast, which show nearly complete conservation of hotspot locations and intensities across species that are 15 million years diverged (25). Almost all hotspots in Saccharomyces yeasts occur at promoters, which are evolutionarily stable, suggesting that how hotspot locations are specified influences how they evolve (22, 26).

The localization of hotspots in the genome

Hotspots in the zebra finch and long-tailed finch genomes are enriched near transcription start sites (TSSs), transcription stop sites (TESs), and CpG islands (CGIs), with close to half of all hotspots occurring within 3 kb of one of these features (~17% occur within 3 kb of both an annotated TSS and a CGI, 3% within 3 kb of both a TES and a CGI, and ~26% within 3 kb of a CGI only; fig. S14). In particular, the hotspots near CGIs are more likely to be shared between species and exhibit stronger evidence for gBGC, compared with hotspots distant from CGIs (fig. S15), providing further support for the importance of these elements in the targeting of recombination. Consistent with the findings about hotspots, recombination rates are nearly two times higher near annotated TSSs and TESs (Fig. 5, A and B). This pattern appears to be driven mainly by their colocalization with CGIs (Fig. 5, A and B, and fig. S16); Rates near CGIs are more than three times higher, with only a small further increase if they are near a TSS or a TES (Fig. 5, C and D, and fig. S17). A positive association between proximity to the TSS and recombination rate has been previously reported in a number of species without PRDM9, including S. cerevisiae, the monkey flower Mimulus guttatus, dogs, and A. thaliana (11, 13, 14, 27), and an association between TES and recombination rate has been shown in A. thaliana (14). In turn, the link between CGIs and recombination rates has been found both in species without PRDM9, including dogs (11), and, albeit more weakly, in species with PRDM9, including humans and chimpanzees (9). Moreover, the relationship between distance to CGIs and recombination rate remains significant after controlling for expression levels in zebra finch testes (Spearman’s $r = -0.3; P = 4.32 	imes 10^{-27}$; fig. S18). This increase in recombination rates near TSSs, TESs, and CGIs supports a model in which, particularly in the absence of PRDM9-binding specificity, recombination is concentrated at functional elements that are accessible to the recombination machinery. TSSs, TESs, and CGIs all coincide with destabilization of nearby nucleosome occupancy (28, 29), and both TSSs and CGIs serve as sites of transcription initiation (30). One implication is that the structure of linkage disequilibrium may differ systematically between species with and without PRDM9, with tighter coupling between regulatory and exonic variants in species with PRDM9.

Under a model in which the recombination machinery tends to target accessible genomic elements, we would not necessarily expect to see enrichment of specific binding motifs associated with hotspot activity. Accordingly, when we tested for motifs enriched in hotspots relative to coldspots, the top motifs in both species were strings of adenines that are also enriched in A. thaliana and yeast hotspots and that may be nucleosome-depleted or facilitate nucleosome removal (fig. S19) (33, 34). We also found a number of additional motifs that are GC-rich and perhaps indicative of CGIs.

At even finer resolution, recombination rates are higher in exons than in intronic regions, as is observed in to A. thaliana (14), dogs (11), and M. guttatus (27), and higher toward the ends of the gene than in the middle (fig. 5, E and F). One possibility for these patterns is that DSBs preferentially initiate in exons near the TSS and TES, and their resolution occurs in intervening exons and introns. The specific mechanism by which DSBs would preferentially initiate in exons is unknown, but the pattern is consistent with an important role for chromatin marks that distinguish exons from introns (28).

Contrasting tempos of broad- and fine-scale recombination rate evolution

Median recombination rates across and within chromosomes vary over nearly six orders of magnitude (figs. S8 and S20), creating a heterogeneous landscape of broad-scale recombination rates across the genome, with regions of elevated recombination near telomeres and large interving deserts [as inferred from zebra finch pedigree data (21)]. Most of the recombination events in the zebra finch and long-tailed finch occur in a narrow portion of the genome, with 82 and 70%
Despite harboring a number of small inversions between zebra finch and long-tailed finch (fig. S22), and, differences in recombination rates between the two species have very different rates of recombination (fig. S20). This evolution of broad-scale rates is particularly notable because, although cytological data indicate that both zebra finches and long-tailed finches harbor a pericentric inversion polymorphism over much of chromosome Z (32, 33), such an inversion is unlikely to explain this extreme a difference (18).

Between the zebra finch and long-tailed finch, broad-scale rates are highly similar, with genomewide correlations of 0.82 and 0.86 at the 10-kb and 1-Mb scales, respectively (Fig. 6 and fig. S20). Despite this broad-scale concordance, we infer that some genomic regions between the two species have very different rates of recombination (fig. S22), and we found tentative support for the lack of recombination in females (fig. S21). In particular, recombination rates for the Z sex chromosome are two orders of magnitude lower than those for the most similarly sized autosomes, chromosome 1A, even after accounting for the 5'→3' orientation of genes.

Further, as has been reported for many other organisms, including chickens (37–39), our results suggest that recombination is positively correlated with levels of nucleotide diversity, particularly on the Z chromosome (figs. S25 to S27). This

Fig. 5. Recombination rates across genomic features in zebra finch and long-tailed finch genomes. (A and B) Estimated recombination rates (\(\dot{\rho}/\text{bp}\)) around annotated TSSs and TSSs in zebra finch (A) and long-tailed finch (B) genomes, conditional on whether the sites are within 10 kb of a CGI. The gray dotted line represents the location of the gene, and the distances are shown accounting for the 5'→3' orientation of genes. (C and D) \(\dot{\rho}\) shown as a function of distance to the nearest CGI in zebra finch (C) and long-tailed finch (D) genomes, conditional on whether the CGI is within 10 kb of an annotated TSS. Figure S17 shows the pattern of CGIs relative to TESs. For (A) to (D), uncertainty in rate estimates (shown in gray) was estimated by drawing 100 bootstrap samples and recalculating means. (E and F) \(\dot{\rho}\) within exons and introns for genes that have >5 exons (n = 7131) in zebra finch (E) and long-tailed finch (F) genomes. Figure S28 shows simulation results that suggest that the inference of higher background \(\dot{\rho}\) in exons does not reflect differences in diversity levels between exons and introns.

S8) (27). Although cytological data indicate that both zebra finches and long-tailed finches harbor a pericentric inversion polymorphism over much of chromosome Z (32, 33), such an inversion is unlikely to explain this extreme a difference (18).

Between the zebra finch and long-tailed finch, broad-scale rates are highly similar, with genomewide correlations of 0.82 and 0.86 at the 10-kb and 1-Mb scales, respectively (Fig. 6 and fig. S20). Despite this broad-scale concordance, we infer that some genomic regions between the two species have very different rates of recombination (fig. S22), and we found tentative support for the lack of recombination in females (fig. S21). In particular, recombination rates for the Z sex chromosome are two orders of magnitude lower than those for the most similarly sized autosomes, chromosome 1A, even after accounting for the 5'→3' orientation of genes.

Further, as has been reported for many other organisms, including chickens (37–39), our results suggest that recombination is positively correlated with levels of nucleotide diversity, particularly on the Z chromosome (figs. S25 to S27). This

Fig. 6. Comparative recombination rates in zebra finch and long-tailed finch genomes. Zebra finch rates are shown in red; long-tailed finch rates are shown in blue. Estimated rates [cM/Mb; obtained from \(\dot{\rho}/\text{bp}\) (38)] are shown as rolling means calculated across 100-kb windows. We show here the five largest autosomal chromosomes and chromosome Z (fig. S20 shows all chromosomes). Rate estimates for chromosome Z should be taken with caution for both biological and technical reasons (more information is given in (18)).
observation is consistent with widespread effects of linked selection in these species (40).

Conclusion

Finches lack PRDM9, yet they nonetheless harbor hotspots, with recombination concentrated at functional elements (TESS, TSSs, and CGIs) that likely denote greater accessibility to the cellular recombination machinery. In sharp contrast to apes and mice, the hotspot locations are conserved among species several millions of years diverged and probably over tens of millions of years. These results suggest that the genetic architecture of recombination influences the rate at which hotspots evolve. Whereas the binding specificity of PRDM9 drives rapid turnover, the reliance on accessible functional genomic features leads to stasis. This hypothesis dovetails with recent results in yeast, in which recombination is concentrated at promoters and hotspots are stable in intensity and location over tens of millions of years (25). To further investigate how deeply this stasis extends and to explore the taxonomic generality of these findings, the approaches illustrated here can be applied to other sequenced bird species (41) and beyond. In doing so, we will begin to better understand why species differ so drastically in their specification of hotspots and, in particular, why a subset relies on PRDM9.

NONHUMAN GENETICS

Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast

Isabel Lam1,2 and Scott Keeney1,2,3

The nonrandom distribution of meiotic recombination shapes heredity and genetic diversification. Theoretically, hotspots—favored sites of recombination initiation—either evolve rapidly toward extinction or are conserved, especially if they are chromosomal features under selective constraint, such as promoters. We tested these theories by comparing genome-wide recombination initiation maps from widely divergent Saccharomyces species. We find that hotspots frequently overlap with promoters in the species tested, and consequently, hotspot positions are well conserved. Remarkably, the relative strength of individual hotspots is also highly conserved, as are larger-scale features of the distribution of recombination initiation. This stability, not predicted by prior models, suggests that the particular shape of the yeast recombination landscape is adaptive and helps in understanding evolutionary dynamics of recombination in other species.
Stable recombination hotspots in birds

Sonal Singhal, Ellen M. Leffler, Keerthi Sannareddy, Isaac Turner, Oliver Venn, Daniel M. Hooper, Alva I. Strand, Qiye Li, Brian Raney, Christopher N. Balakrishnan, Simon C. Griffith, Gil McVean and Molly Przeworski

Science 350 (6263), 928-932.
DOI: 10.1126/science.aad0843

Recombination: The birds and the yeast

Apes and mice have a specific gene, PRDM9, that is associated with genomic regions with high rates of recombination, called hotspots. In species with PRDM9, hotspots move rapidly within the genome, varying among populations and closely related species (see the Perspective by Lichten). To investigate recombination hotspots in species lacking PRDM9, Singhal et al. examined bird genomes, which lack a PRDM9 gene. They looked closely at the genomes of finch species and found that recombination was localized to the promoter regions of genes and highly conserved over millions of years. Similarly, Lam and Keeney examined recombination localization within yeast, which also lacks PRDM9. They found a similar more-or-less fixed pattern of hotspots. Thus, recombination in species lacking a PRDM9 gene shows similar patterns of hotspot localization and evolution. Science, this issue p. 913, p. 928; see also p. 932

ARTICLE TOOLS
http://science.sciencemag.org/content/350/6263/928

SUPPLEMENTARY MATERIALS
http://science.sciencemag.org/content/suppl/2015/11/18/350.6263.928.DC1

RELATED CONTENT
http://science.sciencemag.org/content/sci/350/6263/913.full
http://science.sciencemag.org/content/sci/350/6263/932.full

REFERENCES
This article cites 88 articles, 27 of which you can access for free
http://science.sciencemag.org/content/350/6263/928#BIBL

PERMISSIONS
http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service