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Abstract

High-throughput sequencing (HTS) is revolutionizing biological research by enabling scientists to quickly and

cheaply query variation at a genomic scale. Despite the increasing ease of obtaining such data, using these data effec-

tively still poses notable challenges, especially for those working with organisms without a high-quality reference

genome. For every stage of analysis – from assembly to annotation to variant discovery – researchers have to distinguish

technical artefacts from the biological realities of their data before they canmake inference. In this work, I explore these

challenges by generating a large de novo comparative transcriptomic data set data for a clade of lizards and constructing

a pipeline to analyse these data. Then, using a combination of novel metrics and an externally validated variant data

set, I test the efficacy of my approach, identify areas of improvement, and propose ways to minimize these errors. I find

that with careful data curation, HTS can be a powerful tool for generating genomic data for non-model organisms.
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Introduction

High-throughput sequencing (HTS) is poised to revolu-

tionize the field of evolutionary genetics by enabling

researchers to assay thousands of loci for organisms

across the tree of life. Already, HTS data sets have facili-

tated a wide range of studies, including identification of

genes under natural selection (Yi et al. 2010), reconstruc-

tions of demographic history (Luca et al. 2011) and broad

scale inference of phylogeny (Smith et al. 2011). Daily,

sequencing technologies and the corresponding bioinfor-

matics tools improve, making these approaches even

more accessible to a wide range of researchers. Still,

acquiring HTS data for non-model organisms is nontriv-

ial, especially as most applications were designed and

tested using data for organisms with high-quality refer-

ence genomes. Assembly, annotation, variant discovery

and homolog identification are challenging propositions

in any genomics study (Nielsen et al. 2011; Baker 2012);

doing the same de novo for non-model organisms adds

an additional layer of complexity. Already, many studies

have collected HTS data sets for organisms of evolution-

ary and ecological interest (Hohenlohe et al. 2010;

Ellegren et al. 2012; Keller et al. 2012) and have devel-

oped associated pipelines. Some have published these

pipelines to share with other researchers (Catchen et al.

2011; Hird et al. 2011; de Wit et al. 2012); such programs

make HTS more accessible to a wider audience and serve

as an excellent launching pad for beginning data analy-

sis. However, because each HTS data set likely poses its

own challenges and idiosyncrasies, researchers must

evaluate the efficacy and accuracy of any pipeline for

their data sets before they are used for biological

inference. Evaluating pipeline success is easier for model

organisms, where reference genomes and single nucleo-

tide polymorphism (SNP) sets are more common;

however, for most non-model organisms, we often lack

easy metrics for gauging pipeline efficacy.

In this study, I generate a large HTS data set for five

individuals each from seven phylogeographic lineages in

three species of Australian skinks (family: Scincidae; Fig.

S2), for which the closest assembled genome (Anolis caroli-

nesis) is highly divergent [most recent common ancestor

(MRCA), 150 Ma, Alf€oldi et al. (2011)]. These seven

lineages are closely related; they shared a MRCA about

25 Ma (Skinner et al. 2011). This clade is the focus of a set

of studies looking at introgression across lineage bound-

aries (Singhal & Moritz 2012), and to set the foundationCorrespondence: Sonal Singhal, E-mail: singhal@berkeley.edu
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for this work, I generate and analyse transcriptomic data

for lineages meeting in four of these contact zones, two of

which are between sister lineages exhibiting deep diver-

gence (Carlia rubrigularis N/S, Lampropholis coggeri C/S)

and two which show shallow divergence (Saproscincus

basiliscus C/S, Lampropholis coggeri N/C) (Fig. S2). I use

these data to develop a bioinformatics pipeline to assem-

ble and annotate contigs, and then, to define variants

within and between lineages and identify homologs

between lineages. Using both novel and existing metrics

and an externally validated SNP data set, I am able to test

the effectiveness of this pipeline across all seven lineages.

In doing so, I refine my pipeline, identify remaining chal-

lenges and evaluate the consequences of these challenges

for downstream inferences. My work makes suggestions

to other researchers conducting genomics research with

non-model organisms, offers ideas on how to evaluate the

efficacy of pipelines, and discusses how the technical

aspects of HTS sequencing can affect biological inference.

Methods

All bioinformatic pipelines are available as Perl

scripts on https://sites.google.com/site/mvzseq/origi

nal-scripts-and-pipelines/pipelines, and they are

summarized graphically in Figs 1a and S1. I have also

shared R scripts (R Development Core Team 2011) that

use GGPLOT2 to do the statistical analyses and graphing

presented in this article (Wickham 2009).

Library preparation and sequencing

Even though costs of sequencing continue to drop and

assembly methods improve (Schatz et al. 2010; Glenn

2011), whole-genome de novo sequencing remains inac-

cessible for researchers interested in organisms with

large genomes (i.e., over 500 Mb) and for researchers

who wish to sample variation at the population level.

Thus, most de novo sequencing projects must still use

some form of complexity reduction (i.e., target-based

capture or restriction-based approaches) to interrogate a

manageable portion of the genome. Here, I chose to

sequence the transcriptome, because it is appropriately

sized to ensure high coverage and successful de novo

assembly, I will surely obtain homologous contigs across

taxa, I can capture both functional and noncoding varia-

tion, and assembly can be validated by comparing to

known protein-coding genes.

Liver and, where appropriate, testes samples were

collected from adult male and female lizards during a

field trip to Australia in fall 2010 (Table S1); tissues and

specimens are accessioned at the Museum of Vertebrate

Zoology, UC-Berkeley. I extracted total RNA from RNA-

later preserved liver tissues using the Promega Total

RNA SV Isolation kit. After checking RNA quality and

quantity with a Agilent Bioanalyser, I used the Illumina

mRNA TruSeq kit to prepare individually barcoded

libraries. Final libraries were quantified using qPCR,

pooled at equimolar concentrations, and sequenced

using four lanes of 100 bp paired-end technology on the

Illumina HiSeq2000.

Data quality and filtration

I evaluated raw data quality by using the FASTQC v0.10.0

module (Andrews 2012) and in-house Perl scripts that

calculate sequencing error rate. Sequencing error rates

for Illumina reads have been reported to be as high as

1% (Minoche et al. 2011); such high rates can both lead to

poor assembly quality and false positive calls for SNPs.

To compare with these reported values, I derived an

empirical estimate of sequencing error rate. To do so, I

aligned a random subsample of overlapping forward–

reverse reads (N = 100 000) using the local aligner BLAT

V34 (Kent 2002), identified mismatches and gaps, and cal-

culated error rates as the total number of errors divided

by double the length of aligned regions. Data were then

cleaned: exact duplicates due to PCR amplification were

removed, low-complexity reads (e.g., reads that

extract RNA from 
tissue

construct libraries
and sequence

do quality-control of reads
by trimming adaptor and 

low quality sequence

assemble data and
evaluate assemblies

annotate transcriptome

align reads to 
pseudo-reference

call genotypes or SNPs
as relevant

biological inference

human contamination,
cross-contamination,

polymerase errors, and
sequencing machine errors

incomplete removal of
adaptors, incorrect

de-multiplexing

mis-assemblies, especially
chimeric assemblies

parsing redundant contigs

mis-alignment, especially
due to indels or reads that

map non-uniquely

getting false positives and 
negatives, confusing hetero- 

and homozygotes

misidentifying homologs

(a) (b)

Fig. 1 (a) Pipeline for handling transcriptome data for de novo

population genomic analyses, as presented in this study.

(b) Errors introduced at each stage in the pipeline.

© 2013 Blackwell Publishing Ltd

404 S . S INGHAL



consisted of homopolymer tracts or more than 20% ‘N’s)

were removed, reads were trimmed for adaptor

sequence and for quality using a sliding window

approach implemented in TRIMMOMATIC v0.16 (Lohse et al.

2012), reads matching contaminant sources (e.g., ribo-

somal RNA and human and bacterial sources) were

removed via alignment to reference genomes with

BOWTIE2 v2.0.0-beta5 using default settings (Langmead

& Salzberg 2012), and overlapping paired reads were

merged using FLASH v1.0.2 (Mago�c & Salzberg 2011). Fol-

lowing data filtration, but prior to read merging, I again

estimated sequencing error rates using the method

described above.

de novo assembly

Determining what kmer, or nucmer length, to use is key

in de novo assembly of genomic data (Earl et al. 2011). In

assembling data with even coverage, researchers typi-

cally use just one kmer (Earl et al. 2011); however, with

transcriptome data, contigs have uneven coverage

because of gene expression differences (Martin & Wang

2011). Thus, some have shown the ideal strategy for tran-

scriptomes is to assemble data at multiple kmers and

then assemble across the assemblies to reduce redun-

dancy (Surget-Groba & Montoya-Burgos 2010). To

assemble across assemblies, I first identify similar contigs

using clustering algorithms [CD-HIT-EST v4.5.7; (Li &

Godzik 2006)] and local alignments [BLAT V34; (Kent

2002)] and then assemble similar contigs using a light-

weight de novo assembler [cap3; (Huang & Madan 1999)].

I used this custom multi-kmer approach along with other

existing approaches, including:

1 A single kmer approach implemented in the program

TRINITY R2012-01-25 [a de novo RNA transcript assem-

bler, after which I used my clustering script (Grabherr

et al. 2011)].

2 A single kmer approach implemented in ABYSS V1.3.2 [a

de novo genomic assembler; (Simpson et al. 2009)],

VELVET v1.1 [a de novo genomic assembler; (Zerbino &

Birney 2008)], and SOAPDENOVO-TRANS v1.01 [a de novo

RNA transcript assembler; (SOAP 2012)], which I

implemented as a multi-kmer approach using my cus-

tom multi-kmer script.

3 A multi-kmer approach implemented in the program

OASES V0.2 (Schulz et al. 2012).

I explore a wide range of assembly methods because

generating a high-quality and complete assembly is key

for almost all downstream applications. Particularly with

genome assembly, which is both an art and a science,

researchers should try multiple approaches and evaluate

their efficacy before further analyses (Earl et al. 2011).

However, without a reference genome, evaluating the

quality of a de novo assembly is challenging. Here, I

implement novel metrics for evaluating de novo transcrip-

tome assemblies. In addition to existing metrics in the lit-

erature (N50, mean contig length, total assembly length)

(Martin & Wang 2011), I determined which proportion of

reads were used in the assembly, measured putative

levels of chimerism in transcripts due to misassemblies,

determined the proportion of assembled transcripts

that could be annotated and the accuracy of these tran-

scripts (as determined by the number of nonsense muta-

tions or premature stop codons), and calculated the

completeness and contiguity of the assembly (Martin &

Wang 2011.

Here, I assembled across all individuals in a lineage

rather than assembling each individual separately.

Although this introduced additional polymorphism into

the data which can reduce assembly efficiency (Vinson

et al. 2005), previous work suggests the additional data

lead to more complete assemblies (Singhal, unpub-

lished).

Annotation

Following evaluation of my final assemblies, I chose the

best assembly (here, Trinity-generated assemblies) for

annotation to protein databases. Determining the most

appropriate database for annotation is important, so I

tested multiple options, including using a single-species

database, whether from a distantly related but well-

annotated genome or closely related but poorly anno-

tated genome, using a multi-species database, or using a

curated protein set, such as UniRef90 (Suzek et al. 2007).

For one randomly selected lineage, I tested the efficiency

and accuracy of five different reference databases:

1 The nonredundant Ensembl protein database (Flicek et

al. 2012) for the lizard Anolis carolinensis; with a most

recent common ancestor to my lineages of about

�150 Ma, it is the closest available genome (Alf€oldi

et al. 2011).

2 The nonredundant Ensembl protein data set for Gallus

gallus, whose genome is of higher quality than the Ano-

lis genome, but is more distantly related (�250 Ma).

3 A nonredundant, curated data set (UniRef90) of pro-

teins from a wide range of organisms, whose genes

have been clustered at 90% similarity.

4 A highly redundant Ensembl protein data set for eight

vertebrates sequenced to high quality (human, dog,

rat, mouse, platypus, opossum, dog, chicken).

5 A highly redundant Ensembl protein data set for the

54 vertebrates whose genomes have been annotated.

I evaluated the number of matching contigs, and for

the nonredundant data sets, the number of uniquely

matching contigs. Distinguishing between contigs that
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match and contigs that match uniquely is important, as

despite my clustering during assembly, many contigs in

the assembly appear redundant. These highly similar

contigs likely result from misassemblies, allelic variants,

alternative splicing isoforms or recently duplicated para-

logs. Parsing these categories is challenging without a

reference genome and when expected coverage across

contigs is uneven. Especially for projects interested in

functional genomics, annotation of redundant contigs

remains an important and unresolved issue. Here, I try

to mitigate these errors by using reciprocal BLAST best

matching to annotate contigs and selecting the best

match. In doing so, I likely failed to annotate recently

evolved paralogs, but I should not have multiple copies

of the same gene in my downstream analyses.

Once I determined the best database both with respect

to efficacy and efficiency, I used a custom script to anno-

tate the contigs using a reciprocal best-match strategy via

BLASTX V2.2.24 and TBLASTX with an e-value cut-off of 1e-20

(Altschul et al. 1997) and defined the untranslated

regions and coding sequence of the transcript using EXON-

ERATE v2.1 (Slater & Birney 2005). Furthermore, initial

tests of the annotation pipeline uncovered two chal-

lenges: first, many contigs were chimeric and consisted

of multiple, combined transcripts, and second, many of

the predicted open reading frames (ORFs) had nonsense

mutations, largely due to frameshift mutations. To cor-

rect for chimeric contigs, I identified contigs that had

two or more nonoverlapping and high-quality matches

to different genes using BLASTX and split these contigs

accordingly. Furthermore, I used the program FRAMEDP

V1.2 to identify and correct for frameshift mutations

(Gouzy et al. 2009).

Finally, I searched unannotated contigs against the

NCBI ‘nr’ database using BLASTN to determine these con-

tigs’ identity. As described in the Results, these unanno-

tated contigs largely went unidentified. Thus, although

some of these unannotated transcripts have viable ORFs

and/or had homologs in other lineages, and therefore,

might be genes, I will be conservative and only use anno-

tated transcripts in all downstream analyses.

Finally, to describe the putative biological functions

of my annotated contigs, I determined gene ontology

using BLAST2GO (Conesa et al. 2005).

Alignment

The first step in identifying variants or estimating gene

expression levels is to align the sequencing reads to

one’s reference genome. Here, I use my annotated tran-

scripts as a pseudo-reference genome (Wiedmann et al.

2008), thus aligning the reads used to generate the

assembly to the assembly itself. Here, I tested seven dif-

ferent aligners [BOWTIE v0.12.7, BOWTIE2 v2.0.0-beta5, BWA

v0.6.1, NOVOALIGN v2.07.07, SMALT v0.5.8, SOAPALIGNER

v2.21, STAMPY v1.0.14; Langmead et al. (2009); Langmead

& Salzberg (2012); Li & Durbin (2009); Lunter & Good-

son (2011); Li et al. (2008)] to determine their efficacy

and accuracy. These programs run the gamut of being

fast, but less sensitive to being slower, and more sensi-

tive. Here, sensitivity is defined as the aligner’s ability

to align reads with multiple mismatches. Previous

results have shown (Li 2011) that alignment error is a

common cause of miscalled SNPs, particularly align-

ment errors around indel sites. To evaluate these pro-

grams, I inferred genotypes from the alignments with

SAMTOOLS V0.1.18 (Li et al. 2009). I then compared these

genotypes to a small data set of known genotypes from

one of the contact zones, C. rubrigularis N/S. In another

study, I had Sanger sequenced 200–400 bp of sequence

from 10 to 15 genes for the same individuals sequenced

here (Singhal, unpublished). Importantly, all these genes

were represented at high coverage (� 209 in this data

set; thus, coverage is sufficiently great to ensure accu-

rate genotype calling (Nielsen et al. 2012). I used these

validated genotypes to determine the number of false

positives (or variation called at a nonpolymorphic site)

and negatives (or variation not called at a polymorphic

site) in my inferred genotypes. Furthermore, I evaluated

these programs based on the proportion of reads and

read pairs they aligned and the concordance of SNP

calls across data sets.

Variant discovery

Two major types of variant discovery are SNP identifica-

tion and genotype calling. Many researchers are inter-

ested only in identifying SNPs or determining which

nucleotide positions are variable in a sample of individu-

als. SNP-containing regions are then resequenced or

genotyped for further analysis (Wiedmann et al. 2008).

Increasingly, researchers are both identifying variable

sites, and then, summarizing variation at these sites

using the site frequency spectrum (SFS) or calling geno-

type likelihoods for each individual for subsequent

population genomics analyses. SNP identification has

become an easier exercise as sequencing costs dropped

and coverage has increased. However, genotype calling

remains a challenging proposition, particularly in dip-

loid and polyploid individuals, as distinguishing hetero-

zygosity, homozygosity and sequencing errors at

variable sites is difficult unless there is high coverage

[� 20 9, (Nielsen et al. (2012)]. Thus, I focus on geno-

type calling and its use in characterizing variation for

population genomics analyses. Importantly, I assume in

my approach and discussion that both alleles are

expressed in each individual. Although there are some

data to suggest that expression can be allele-biased,
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properly controlling and testing for this issue requires

having previously identified variants or genomic data

(Skelly et al. 2011).

My results indicated that BOWTIE2 was the most effec-

tive and efficient aligner (see Results); thus, I used it for

all downstream analyses. When identifying variants

from alignment data, there are several approaches:

1 Brute strength methods, in which the read counts for

given alleles at a site are calculated, and variants are

determined by an arbitrary cut-off (Yang et al. 2011).

2 Maximum-likelihood (VARSCAN V2.2) and Bayesian

methods (SAMTOOLS V0.1.18)(Koboldt et al. 2009; Li et al.

2009), in which algorithms consider strand bias, align-

ment quality, base quality and depth to call genotype

likelihoods for individuals. These methods have been

developed further to account for Hardy–Weinberg dis-

equilibrium and linkage disequilibrium in calling and

filtering variants (Li et al. 2009; DePristo et al. 2011), to

use machine learning with a set of validated SNPs to

improve algorithms (DePristo et al. 2011), and to rea-

lign reads near indel areas to ensure that inaccurate

alignments do not lead to false SNPs.

3 Bayesian methods (ANGSD V0.3) which infer the SFS for

all the variants in the data set, which is, in turn, used

as a prior to estimate genotype likelihoods for individ-

uals (Nielsen et al. 2012). This method is particularly

useful for data sets with large population samples.

Here, I test these three general types of SNP and

genotype discovery, using read counting, VARSCAN, SAM-

TOOLS and ANGSD in two sister lineage pairs for which I

have validated genotypes (C. rubrigularis N/S and L. cog-

geri N/C). I both looked at concordance of SNP and

genotype calls across methods and calculated the num-

ber of false positives and negatives.

Homolog discovery

Homologs between lineages must be identified for any

comparative genomics analyses. In this study, my lin-

eages are all closely related, so homology identification

is less challenging than in many other comparative stud-

ies. However, ensuring I am identifying orthologs across

lineages and not paralogs is challenging, particularly as

my annotation pipeline could not conclusively distin-

guish orthologs and paralogs in the absence of a refer-

ence genome. With that caveat, I test three different

methods for identifying homology:

1 Defining homologs by their annotation; i.e., contigs

that share the same annotation are assumed to be

homologs.

2 Defining homologs by reciprocal best-hit BLAST, as is

most commonly done in other studies (Moreno-Hagel-

sieb & Latimer 2008).

3 The SNP method, or defining homologs by mapping

reads from one lineage to the other lineages’ assembly,

identifying variants and thus determining homologous

sequence.

I evaluated these methods by the number of homo-

logs found, the percent of aligned sequence between

homologs and the raw number of differences between

homologous sequence. I looked at homology discovery

both between sister lineages and nonsister lineages, as I

expect discovery across nonsister lineages will be harder.

Biological inference

Finally, I determined how robust biological inference is

to the analysis method used. First, to determine how

genotype calling affects downstream inference, I inferred

the SFS and associated summary statistics (Tajima’s D, h,
p) for one lineage across different genotype calling meth-

ods and different coverage levels using DADI 1.6.2 (Gut-

enkunst et al. 2009). Second, to determine how homology

identification affects downstream inference; I determined

dN/dS ratios using PAML 4.4 (Yang 2007) and raw

sequence divergence for each gene across different meth-

ods of homology.

Results

Data quality and filtration

Library preparation and sequencing were successful for

all individuals. On average, I generated 3.5 � 0.5 Gb per

individual. Duplication rates, low-complexity sequences

and contamination levels were low (Table S2). However,

aggressive filtering and merging significantly reduced

the raw data set; I lost 27.1% � 3.8% of raw base pairs

per individual. As seen in Fig. S3, this strategy signifi-

cantly improved the per-base quality of my data. Indeed,

I was able to reduce sequencing error rates in my final

data set five-fold (initial error rates: 0.3 � 0.1%, final

error rates: 0.06 � 0.01%). These error rates are likely

over-estimates, because I used the lower quality portion

of the read (the tail end) to identify sequencing errors.

Despite this reduction in error rates, profiling of mis-

matches across the reads showed that both the head and

tail of the read still harbour a higher number of mis-

matches compared with the rest of the read. This pattern

persisted even when the first and last five base pairs of

each read were trimmed prior to alignment (Fig. S4). Pos-

sibly, as others have found residual adaptor sequence in

their data sets despite using rigorous adaptor trimming

(K. Bi, unpublished), these heightened error rates could

be due to adaptor sequences leading to misalignments

and spurious SNPs.
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de novo assembly

To assemble my data, I tested five different programs,

which employed different strategies (e.g., single kmer,

built-in multi-kmer approach, my custom multi-kmer

approach). I evaluated the assemblies on many metrics;

here, I show data for four of these metrics. With respect

to the percentage of paired reads that aligned to the

assembly, SOAPDENOVO and TRINITY performed far better

than the rest of the assemblers (Fig. 2a), suggesting their

assemblies were more contiguous. The same two assem-

blers and Velvet also recovered the greatest number of

annotated transcripts, measured here by the number of

core eukaryotic genes found in these assemblies [core

eukaryotic genes mapping approach; Parra et al. (2007);

Fig. 2b]. OASES and TRINITY appeared to be the most accu-

rate, as they contained the fewest number of nonsense

mutations in annotated ORFs (Fig. 2c). Finally, OASES,

TRINITY and SOAPDENOVO assemblies had the fewest num-

ber of putative chimeric transcripts (Fig. 2d). Looking

across all these metrics, TRINITY emerges as the best

assembler. Furthermore, TRINITY did a good job assem-

bling most of the data; on average, just 8.1 � 4.3% of

contigs from other assemblies were unique to that assem-

bly compared with TRINITY. As such, I used TRINITY

assemblies for all downstream analyses. As seen in

Table 1, the basic metrics of these assemblies (e.g., num-

ber of contigs, total length of assembly and N50) were

fairly constant across all lineages. Unlike other studies

(Comeault et al. 2012), I find no correlation between con-

tig length and coverage, suggesting my assembly is not

data-limited (Fig. S5). I do find a weak, but significant

negative correlation between polymorphism levels and

contig length (r2 = �0.169, P-value <0.05; Fig. S6), sug-
gesting that, for more variable contigs, combining across

individuals negatively impacts assembly contiguity.

Annotation

After assembling the data, I annotated the assemblies to

identify uniquely annotated contigs for downstream

analyses and to refine the assemblies further. First,

because my focal lineages are evolutionarily distant from

the nearest genome (MRCA �150 Ma to Anolis carolinen-

sis), I wanted to test the efficacy of different databases to

annotate my contigs. While more complete databases did

lead more annotated contigs (Table S3), the increase was

marginal. Furthermore, larger databases consume signifi-

cantly more computing time; here, annotating to the

UniProt90 database took nearly 100 times the processor

hours as annotating to A. carolinensis. Thus, I used the A.

carolinensis database for all further annotations. Impor-

tantly, I could annotate these genomes to more distant

relatives (G. gallus and T. guttata; MRCA � 300 Ma),

without seeing a significant decrease in annotation

success (Table S3). This result suggests that such an

assembly
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Fig. 2 Evaluation of assemblies across the

seven sequenced lineages according to

(a) percentage of paired reads that aligned

to reference, (b) number of CEGMA genes

that are found in assembly, (c) percentage

of annotated coding sequences that had

nonsense mutations, and (d) percentage

of contigs that were putative chimeras.
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annotation approach could work for organisms in even

more genomically depauperate clades.

While annotating contigs, I identified a low percent-

age of chimeric contigs (�4%), which I resolved by split-

ting these contigs into individual genes (Table S4).

Inspecting alignments of sequencing reads to these chi-

meric contigs suggested that these contigs form during

assembly and not due to technical errors during library

preparation, as chimeric junctions generally had signifi-

cantly reduced coverage. Furthermore, a small portion of

the predicted ORFs of annotated contigs (�3%) had pre-

mature stop codons. Although it is possible that these

ORFs are pseudogenes (Kalyana-Sundaram et al. 2012), it

seems more likely that they are due to assembly errors,

as these contigs were generally highly expressed. Using

FRAMEDP, I was able to identify and fix many of these

likely frameshift errors (Table S4).

Through this pipeline, I annotated an average of

23 360 contigs per lineage, which matched to an average

of 11 366 unique genes in the A. carolinensis genome

(Table 1). I also recovered the full coding sequence for

many genes; 67% of unique annotated contigs encom-

passed the entire coding sequence for a gene, including

portions of the 5′ and 3′ UTRs. These numbers appear

reasonable – the annotation for the A. carolinensis genome

currently includes 19 K proteins, and liver tissue does

not express all genes at a sufficiently high level to be rep-

resented here (Ramsk€old et al. 2009). These genes con-

tribute to a diversity of biological processes and serve a

wide range of molecular functions, suggesting I assayed

a varied portion of the transcriptome (Fig. S7).

Furthermore, my pipeline appears to be robust; almost

all unannotated contigs failed to find a good match in the

NCBI ‘nr’ database (Fig. S8). Approximately 9% of unan-

notated contigs matched to genes; however, further anal-

ysis of these matches showed that almost all of them

matched with such low-quality to prevent annotation.

In addition, by annotating contigs rigorously to limit

the number of putative duplicate contigs, I significantly

reduced the redundancy of my data set. When I aligned

sequencing reads to my initial, unannotated assembly, I

found that �10% of mapped reads aligned to multiple

places in the assembly. Some of these multiple

alignments might be because of biological redundancy –

perhaps these reads are aligning across recently dupli-

cated genes or across common motifs in genes – but it is

likely a good portion of them are aligning multiply

because the initial assembly had many redundant con-

tigs (�50% of annotated contigs were not unique). After

annotating the genome and removing redundant contigs,

the percentage of mapped reads that aligned non-

uniquely was reduced to approximately 2%. However,

removing redundant contigs also lead to an average 8%

decline in overall mapping efficiency. Thus, it seems

likely these redundant contigs are ‘biologically real’, but

we do not yet have the tools to parse such contigs prop-

erly (Vijay et al. 2012).

Alignment

Identifying variants and quantifying gene expression

first require that sequencing reads are aligned to the ref-

erence genome. Here, I tested the efficacy of seven differ-

ent alignment programs, which employ different

algorithms over a range of sensitivity and speed. I evalu-

ated these programs in three ways. First, I used my exter-

nally validated set of genotypes to see how many

genotypes were inferred correctly. Almost all of the

aligners performed well and led to the correct genotype

at � 90% of the sites. Although the false negative rate

was moderately high (�5% for most aligners), the false

positive rate was low (Table 2). BOWTIE2 clearly outper-

formed the rest of the aligners and was thus used for all

downstream analyses. Second, I evaluated how many

read pairs and reads the programs could align. Although

NOVOALIGN, SMALT and STAMPY are generally considered to

be more sensitive aligners, I found little variation in the

percentage of reads aligned across programs (Fig. 3).

BOWTIE2 and STAMPY were able to align the most paired

reads, which is useful as aligning paired reads reduces

the likelihood of errant matches and nonunique matches

(Bao et al. 2011). Finally, I looked at overlap in SNPs

Table 1 Summary of assemblies and their annotation. Complete annotated contigs are those with some 5′ and 3′ UTR sequence, as well

as the full coding sequence

Assembly

Number

contigs

Total

length n50

Annotated

contigs

Annotated

contigs (unique)

Complete

annotated contigs

Carlia rubrigularis, N 104648 89.1e6 1806 25198 12063 8179

C. rubrigularis, S 98280 84.3e6 1780 24323 11558 7697

Lampropholis. coggeri, N 96798 87.5e6 1972 22760 11457 7344

L. coggeri, C 106937 92.7e6 1845 23852 10894 7796

L. coggeri, S 112935 89.6e6 1549 23774 11029 7258

Saproscincus. basiliscus, C 84756 77.7e6 1951 21584 11221 7586

S. basiliscus, S 98685 83.5e6 1749 22031 11340 7696

© 2013 Blackwell Publishing Ltd

DE NOVO GENOMIC ANALYSES FOR NON-MODEL ORGANISMS 409



inferred across programs. Problematically, although all

programs were fed the same reference genome and

sequencing reads, I saw only moderate overlap – on

average, only 77% � 9% of SNPs were shared. Checking

the raw alignments suggested that these discrepancies

often arose from differences in alignment rather than

differences in SNP inference postalignment. These

results suggest that alignment is probably a major source

of error in de novo HTS analyses, as has been suggested

by other studies (Li 2011; Kleinman & Majewski 2012;

Lin et al. 2012). Furthermore, although the common set

of SNPs found across these programs is likely to be high-

quality, considering only these SNPs is likely to lead to

many false negatives. That said, when the same SNPs

were called across programs, genotype inference was

highly concordant; 94 � 2% of genotype calls were the

same across alignment methods, and inferred allele

frequency at these SNPs was highly correlated

(r = 0.94 � 0.01).

Variant discovery

After alignment, programs for variant inference are used

to call SNPs and genotypes. In the previous tests, I used

the variant discovery program SAMTOOLS for all analyses;

here, I test a few approaches: a brute strength approach,

in which I call SNPs and genotypes based solely on count

data, two probabilistic methods (SAMTOOLS and VARSCAN),

and a probabilistic method that uses the allele frequency

spectrum (ANGSD). I first assessed accuracy of genotype

calls by using my externally validated genotype set. In

general, I found that all methods performed fairly well –

particularly, when a SNP was identified, all programs

inferred the correct genotype with high accuracy

(� 98%; Table 3). However, the count method of identi-

fying variation led to many false positives, an unsurpris-

ing result given its failure to account for sequence error

or alignment score. ANGSD had a high false negative rate,

the reason for which remains unclear, though is possibly

due to the small sample sizes used here. But, as shown

by other work, ANGSD is best suited for correctly inferring

the shape of the SFS (Nielsen et al. 2012). Comparing

across all SNPs found across all programs, I found that

concordance across all SNPs was moderate, similar to

Table 2 Accuracy of genotype inference following the use of different programs for alignment; all genotypes were inferred using

samtools postalignment. Parenthetical percentages show the relative proportions of genotype types

Genotype BOWTIE BOWTIE2 Bwa Novoalign Smalt SOAPaligner Stampy

Right genotype 379 (89.8%) 419 (99.2%) 381 (90.3%) 383 (90.8%) 393 (93.1%) 207 (49.0%) 391 (92.7%)

Wrong genotype 29 (6.9%) 3 (0.7%) 7 (1.7%) 9 (2.1%) 6 (1.4%) 52 (12.3%) 8 (1.9%)

False negative 12 (2.8%) 0 (0%) 34 (8.1%) 30 (7.1%) 23 (5.5%) 163 (38.6%) 23 (5.5%)

False positive 3 1 1 1 1 1 5

program

p
ai

rs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

bowtie bowtie2 bwa novo smalt soap stampy

program

re
ad

s

0.4

0.5

0.6

0.7

bowtie bowtie2 bwa novo smalt soap stampy

(a) (b) Fig. 3 Evaluation of different alignment

software across three randomly selected

lineages with respect to two metrics,

(a) number of paired reads aligned and

(b) number of reads aligned.

Table 3 Accuracy of genotype inference across different pro-

grams for genotype inference; for all, BOWTIE2 was used for align-

ment. Parenthetical percentages show the relative proportions of

genotype types

Genotype ANGSD

Count

data SAMTOOLS VARSCAN

Right

genotype

520 (68.4%) 745 (98.0%) 750 (98.7%) 745 (98.0%)

Wrong

genotype

3 (0.3%) 15 (2.0%) 10 (1.3%) 15 (2.0%)

False

negative

230 (30.2%) 0 (0%) 0 (0%) 0 (0%)

False

positive

6 134 1 12
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my comparative alignment results. On average, only 83%

of SNP calls are shared across programs; this lack of con-

cordance was largely driven by SNPs inferred from

count data. More promisingly, when a site is inferred as

a SNP, 98% of the genotype calls are shared across

programs. Overall, these results suggested that SAMTOOLS

performed the best, so I used it for all downstream

analyses.

Upon defining SNPs and then genotypes for each

individual, I explored how different variant discovery

methods affect biological inference by constructing the

SFS. Despite the only moderate levels of concordance in

SNP calls, I find that the SFS is nearly identical across all

the different approaches, but VARSCAN (Fig. 4). Impor-

tantly, this result only holds true when I restrict analysis

to higher coverage contigs (� 10 9); low-coverage con-

tigs show aberrant patterns. Although the SFS is similar

across all approaches, estimates of key population

genetic summary statistics (i.e.,hx, p) vary depending on

the approach – an unsurprising result given that the total

number of SNPs inferred differs across approaches.

Thus, prior to using these data for population genetic

analyses, ascertainment bias must be factored into any

downstream inference (Nielsen 2004). Finally, to look at

these SNPs in greater detail, I annotated the SNPs I

found in two sister lineages, with respect to how they are

segregating, their location relative to the gene and their

coding type (Fig. S10). Not only are the patterns of poly-

morphism and nonsynonymous/synonymous mutations

reasonable (Begun et al. 2011), but there are many types

of variants (i.e., coding vs. noncoding, nonsynonymous

vs. synonymous, fixed vs. polymorphic), which will

allow the data to be used to identify adaptive signatures

of molecular evolution, infer demographic history and

develop markers.

Homolog discovery

To identify homologs between lineages, I tested three

different methods and then evaluated their

effectiveness. All three methods performed well,

identifying more than 8000 homologous pairs between

lineages within-genera and between-genera for a signifi-

cant portion of the contig length (Fig. 5). However, with

the SNP method for homology, alignment efficiency

dropped off significantly in between-genera compari-

sons, leading to identified homologs being shorter. I

chose to use reciprocal BLAST matching to identify

homologs for all downstream analyses as it was able to

identify more homologs than the two other methods

and it worked well across evolutionary distances

(Fig. 5). This approach identified 8800 homologous con-

tigs across all seven lineages for use in comparative

analyses.

Estimation of the summary statistics (sequence diver-

gence and dN/dS ratios between homologs from lineage

pairs) is affected by how homologs are defined (Fig. S11).

Defining homologs via annotation or via reciprocal BLAST

matching gives very similar results for both sequence

divergence and dN/dS. However, using SNPs to recon-

struct the homolog results in a fuzzier pattern. When I

restrict the analysis to homologs with higher coverage

(> 10 9) for which there is greater confidence in SNP

inference (see Results: Variant Discovery), all three meth-

ods are highly correlated. Thus, this method for homolog

identification should account for differences in coverage,

where appropriate.

Discussion

In creating and implementing a pipeline for high-

throughput sequence data, I noted several possible

sources of error (Fig. 1B):

1 Errors introduced during library preparation, which

can include human contamination, errors introduced

during PCR amplification of the library, and cross-

contamination between samples.

2 Errors introduced during sequencing, the frequency

and type of which are dependent on the chemistry of

sequencing platform, and subsequent de-multiplexing.

allele count

de
ns

ity

0.1

0.2

0.3

0.4

0.5

1

2 4 6 8

10

2 4 6 8

20

2 4 6 8

50

2 4 6 8

angsd

count

samtools

varscan

Fig. 4 Unfolded allele frequency spectrum for variants within a randomly selected lineage for sites represented at 19, 109, 209 and

509 coverage per individual, across different methods for genotype inference.
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3 Errors introduced during assembly (Baker 2012), such

as misassembly of reads to create chimeric contigs.

4 Errors due to misalignment of reads to assembly dur-

ing variant discovery, particularly caused by indels in

alignments and reads that map to multiple locations.

5 Errors in SNP and genotype calling, such as not sam-

pling both alleles and thus mistakenly calling a homo-

zygote.

To this, I add two additional sources of uncertainty

that every study in evolutionary genomics faces – have

contigs been annotated correctly and have orthologs

between compared genomes been identified correctly

(Chen et al. 2007)? Errors can arise at any stage in the

process; such errors percolate through subsequent steps,

likely affecting all downstream inference (Kleinman

& Majewski 2012; Lin et al. 2012; Vijay et al. 2012).

Whether using their own pipeline or a pre-existing

pipeline, researchers will want to incorporate some of

the checks suggested here to ensure that the pipeline is

working well for their data and that incidence of errors

is low. Moving forward, the questions become how to

limit these errors and how to mitigate their effects.

All these sources of error are nontrivial, but with

careful data checking and willingness to discard low-

quality data, it is possible to mitigate the effects of

these errors. First, as has now become standard, scrub-

bing reads for low-quality bases and adaptors is a

must – as shown here, read cleaning can reduce error

rates noticeably. When possible, merging reads from

paired-end reads can further decrease error rates and

will lead to more accurate estimates of coverage for

expression studies (Mago�c & Salzberg 2011). Second,

having a high-quality assembly is crucial both for accu-

rate annotation and variant discovery. Inferring the

quality of de novo assemblies is challenging, as there

are no clear metrics or comparisons to use (Martin

& Wang 2011). However, I propose a few metrics,

which can be used with transcriptome data – primarily,

looking for assemblies that minimize chimerism and non-

sense mutations that are contiguous, and that capture a

significant portion of known key genes. Undoubtedly,

errors remain in the final assemblies, but these metrics

helped me select the most accurate assembly for down-

stream analyses. In addition, contig redundancy in final

assemblies remains a pressing challenge. By using a strict

reciprocal-BLAST annotation strategy, I removed many of

these apparently redundant contigs. However, this

approach certainly removed some biologically real

contigs that were recent duplicates and alternative splic-

ing isoforms of interest to those interested in expression

differences between biological groups (Vijay et al. 2012).

Researchers should continue to explore better methods to

identify orthologs and paralogs. Until better methods are

developed, using strict criteria for identifying nonredun-

dant gene sets is a must, as most biological inference

programs assume that each contig offered for analysis is a

unique evolutionary unit.

Alignment and variant discovery remain notable chal-

lenges. In part, a poor-quality assembly genome truly

can affect variant discovery – alignments across misas-

semblies can lead to errant SNP calls, particularly when

misassemblies introduce indels (Li 2011). Furthermore,

unless some sort of redundancy reduction is used, many

contigs will be nearly identical in an assembly, leading to

a high rate of nonunique alignments and miscalled

SNPs. I was able to remove most redundant contigs, and

thus, I reduced the proportion of nonunique alignments.

I still see evidence for errors in alignment as (i) discrep-

ancies between our externally validated SNP set and

genotype calls from these alignments and (ii) the only

moderate level of congruence between different

approaches fuelled by the same data. The same patterns

hold for SNP inference after alignment. Some of these

errors are probably driven by the quality of the assembly

– by removing alternative splicing isoforms and recently
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duplicated genes, some of the reads probably misaligned

to retained contigs although they were derived from

another, rejected contig. However, many of these errors

disappear at higher coverage, thus, given these data,

the best approach is to rely on contigs with higher cover-

age �10 to 209, at least – and to account for this ascer-

tainment bias in any biological inference. Importantly,

however, by relying on high-coverage contigs in tran-

scriptome analyses one is biased to more slowly evolving

genes, as there is a strong negative correlation between

expression levels and rate of molecular evolution

(Drummond & Wilke 2008).

Furthermore, to ensure the vagaries of variant discov-

ery do not unduly influence our biological inference, we

should use the genotype likelihoods and not genotype

calls for downstream work. Ideally, researchers would

conduct subsequent inference that use the SFS or geno-

type likelihoods as input, such as BAMOVA (Gompert

& Buerkle 2011) or DADI (Gutenkunst et al. 2009), thus

ensuring uncertainty in SNP and genotype calling is

incorporated into model fitting. However, many analy-

ses, particularly those used by most biodiversity

researchers (i.e., coalescent-based demography and

phylogeny programs), require known genotypes or

haplotypes. Until uncertainty is incorporated into such

programs, researchers will have to arbitrarily choose cut-

offs to determine most likely genotypes. In such cases,

researchers might want to restrict their analyses to

regions with high coverage, where calls are likely more

certain (Nielsen et al. 2012).

Moving forward, how can we reduce the sources of

errors stemming from alignment errors and genotype

inference? Improved assemblies, facilitated by new long-

read sequencing technologies, will certainly help. As

researchers collect externally validated SNP data sets,

they can use programs like GATK to recalibrate variant

calling and to realign around indels (DePristo et al.

2011). Researchers will also increasingly sequence more

individuals in a population, which will better take

advantage of multi-sample methods like SAMTOOLS and

ANGSD (Li et al. 2009; Nielsen et al. 2012). Finally, pro-

grams like CORTEX, which assemble across individuals to

provide both a reference assembly and individual assem-

blies, are promising (Iqbal et al. 2012). Simulations

suggest that this method can also better handle data with

indel polymorphism.

Finally, homolog discovery is a challenge in any gen-

ome project (Chen et al. 2007), and this project was no

exception. All three methods I tested for homolog dis-

covery worked well, but I recommend only using a SNP-

based approach between lineages that are closely related

and for contigs with high coverage. Moving forward, as

we acquire more comparative genomic data across the

tree of life, homolog discovery should become an easier

problem, as fuelled by comparative clustering programs

like ORTHOMCL (Chen et al. 2005).

Given this, other researchers should carefully con-

sider the benefits and challenges of working with tran-

scriptomic data before embarking on similar studies. For

researchers interested in obtaining variation data for

non-model organisms and who do not require expres-

sion data, they might consider using restriction-based

methods like RADtags or reduced-representation

libraries (Hohenlohe et al. 2010) or collecting target-

based capture data (Bi et al. 2012). Restriction-based

methods are cheaper than transcriptome methods, and

they do not require that genetic samples have been

preserved to maintain RNA quality. However, finding

homologous contigs across phylogenetic depths can be

challenging, and such contigs typically cannot be anno-

tated. Target-based capture methods can be used with

low-quality DNA and have the same benefits of tran-

scriptome data (i.e., homologous contigs can be identi-

fied across phylogenetic depths and contigs can be

annotated) without its disadvantages (i.e., coverage is

expected to even across contigs and redundancy in

assemblies can be more easily handled) (Bi et al. 2012).

However, exome-capture is more expensive than restric-

tion-based methods and designing probes requires

previously acquired genomic data. Thus, determining

which approach is ideal for a given study depends on

the number and quality of samples to be assayed, the

amount of money available and the phylogenetic span

of the samples.

Despite the challenges of HTS data generally and

transcriptome data specifically, through this work I col-

lated a large data set of over 12 K annotated contigs,

spanning a wide range of biological functions, and over

100 K SNPs between lineage pairs, spanning a wide

range of locations and coding types. Notably, I was able

to do all these analyses using existing, open-source soft-

ware and, but for assembly, using a low-end desktop

machine. Genomic analyses are not just for those work-

ing with humans or mice anymore. With careful and

thoughtful data curation, HTS can enable researchers to

use genomic approaches to explore all the branches in

the tree of life.
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Supporting Information

Additional Supporting Information may be found in the online

version of this article:

Fig. S1 Pipeline used in this work, annotated to show (1) differ-

ent approaches tested [pink], (2) the approach used for the final

analysis [blue], and (3) scripts used, as named in the DataDryad

package [green].

Fig. S2 A. Phylogeny of the lineages studied in this work. Boxes

indicate contacts studied; the top percentage reflects the mito-

chondrial divergence between lineages and the bottom is

nuclear. B. A map of the Australian Wet Tropics, with all identi-

fied contact zones represented by black lines. Contacts of inter-

est in this study are labelled.

Fig. S3 Quality scores in Phred along a read; top graph shows

quality prior to cleaning and filtering, bottom shows quality

after cleaning.

Fig. S4 Identified mismatches between reads from a randomly

selected individual and the reference sequence, A. expressed in

raw numbers and B. as a density distribution.

Fig. S5 Correlation between contig length and coverage for a

randomly selected final assembly.
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Fig. S6: Correlation between contig length and polymorphism

for a randomly-selected final assembly.

Fig. S7: Gene ontology for annotated contigs for a randomly

selected lineage, with respect to cellular component, biological

process and molecular function.

Fig. S8: Identifying unannotated contigs from a randomly

selected assembly, as identified from a BLAST search to the

NCBI ‘nr’ nucleotide database.

Fig. S9: Correlation in coverage between homologous, annotated

contigs for a randomly selected lineage pair.

Fig. S10: Summary of SNPs found in a randomly selected line-

age pair, annotated with respect to SNP and coding type.

Fig. S11: Top row shows correlation in sequence divergence and

bottom row shows correlation in inferred dN dS ratios for ho-

mologs for a randomly selected lineage pair for three methods

of homolog discovery: annotation, in which contigs which share

the same annotation are inferred to be homologous, BLAST, in

which reciprocal best-hit BLAST is used to identify homologs,

and SNP methods, in which variant information is used to

reconstruct one homolog with respect to another.

Table S1: Individuals included in this study and their associated

locality data; individuals are accessioned at the Museum of Ver-

tebrate Zoology at University of California, Berkeley.

Table S2: Quality control filtering and their rates for raw data,

summarized across seven lineages.

Table S3: Number of contigs annotated according to different

reference databases for a randomly selected assembly.

Table S4: Prevalence of chimerism, or percentage of contigs that

appeared to consist of multiple genes misassembled together,

and stop codons, or percentage of contigs that had nonsense

mutations, in assemblies, summarized across seven lineages

both before and after the data were run in the annotation pipe-

line.

Table S5: Number of annotated contigs which have given cover-

age for each individual; shown for one randomly selected line-

age pair.
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