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1 Design of Exome Capture Arrays3

For each lineage, we first sequenced five transcriptomes from a single population far from the4

contact zone (Fig. S1; Singhal (2013)). We annotated these transcriptomes and their intron-exon5

boundaries using the programs blast and exonerate and the reference genome from Anolis carolinen-6

sis (AnoCar2.0+) (Altschul et al. 1997; Slater and Birney 2005). We identified exons for which (1) we7

could identify orthologs in both lineages of the lineage-pair, (2) GC-content was between 30% and8

80% (Bi et al. 2012), (3) the transcriptome data suggested the exons contained either segregating or9

fixed variation (Singhal 2013), and (4) exon length was >200 bp. To this, we added (1) full-length10

transcripts for genes (N = 95− 99) that showed evidence of positive and divergent selection, as11

identified by calculating dxy, dN
dS , and FST (Yang 2007), (2) full-length transcripts for genes (N = 92)12

with metabolic or reproductive function as defined by Gene Ontology categories, because these13

genes possibly contribute to cryptic phenotypes with relevance for species boundaries, (3) two14

mitochondrial loci, NADH dehydrogenase subunit 4 and 16s ribosomal RNA, and (4) the 5’ and 3’ un-15

translated regions (UTRs) for regions previously genotyped in these populations (N = 10; Singhal16

and Moritz (2013)). Both the mitochondrial and the UTR targets were used to evaluate the efficacy17

of our pooled strategy. Targets were then filtered to remove repetitive sequence, which included18

targets that (1) matched to repeats in the RepeatMasker database (Smit et al. 2013), (2) were highly19

similar to other targets on the same array, and (3) contained k-mers that were disproportionately20

common in the A. carolinensis genome. To minimize bias in capture efficiency between lineages,21

we printed orthologs from each lineage for each targeted exon.22

In total, we targeted an average of 3082 exons and 1.83 Mb of sequence, and the four capture23

arrays had 1120 exons in common. As expected, our targeted exons are more divergent than all24

other exons in the transcriptome (Fig. S8), but general patterns of divergence are similar. The25

targets were then printed at 2bp tiling on Agilent 1M eArrays. Scripts for array design are available26

at https://github.com/singhal/introgression_AWT/tree/master/probeDesign.27

2 Simulations of Anonymous Pooling28

To determine the pooling strategy – both with respect to number of individuals to include per pool29

and desired coverage – we conducted simulations in R (R Development Core Team 2011). These30

simulations were designed to determine how sampling drift would affect our inference of allele31

frequency. Anonymous pooling leads to two primary sources of bias. First, we are sampling a32

subset of individuals from a much larger population. All estimates of allele frequency are subject33

to this bias, even when allele frequency is calculated via genotyping individuals. Second, because34

we are sequencing anonymous pools, we will sequence unequal number of reads per individual,35
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even if individuals are combined at exactly the same concentrations. Inaccuracies in estimating36

DNA concentrations will only exacerbate this bias. Here, for ”known” allele frequencies (0.01,37

0.1, 0.25, 0.5), we used the binomial sampling distribution to simulate the effects of both sources38

of sampling drift. Importantly, we assumed that the DNA had been pooled in exactly equimolar39

amounts, such that each chromosome in the population was equally likely to be sampled. As40

summarized in Fig. S2, we had two major findings:41

1. increasing the number of individuals in a pool improved estimates of allele frequency much42

more than increasing sequencing effort (i.e., increasing coverage) for a constant number of43

individuals44

2. increasing sequencing effort such that average coverage for a pool was >50× had only neg-45

ligible effects on our estimates of allele frequency46

Based on these results, we sequenced our libraries to a projected depth of 50×.47

We then extended these simulations to determine how anonymous pooling would affect es-48

timates of cline center and cline width. For each contact zone, we summarized key aspects of49

sampling design: the number of demes sampled, the number of individuals sampled per deme,50

the position of these demes along the transect, and the average coverage of sequence data. We ad-51

ditionally calculated the median, mean, and 25% & 75% cline width for each contact zone. Across52

these four cline widths and using the empirical sampling design, we first calculated the expected53

allele frequencies at each deme using a simple sigmoidal equation for clines. We then accounted54

for sampling drift due to subsampling the true population and due to sequencing anonymously55

pooled reads. We repeated this 500 times for each cline width. We then followed the same ap-56

proach used for our empirical data (see Fitting Clines) to infer cline centers and widths for each57

simulated data set. These simulations assume that clines best fit a sigmoidal model, and, as above,58

they assume that DNA has been pooled in equimolar amounts across individuals.59

3 Evaluating Success of Exome Capture60

Applications of exome capture to non-model organisms are still in their infancy (Bi et al. 2012;61

Lemmon et al. 2012), and thus, we evaluated the efficacy of our exome capture method to validate62

our results. To do so, we used several metrics and statistics, which we outline below.63

1. Sequencing: The first step in a next-generation experiment is to filter raw data for quality.64

Here, through a rigorous filtration, we lost 45% to 55% of our data, largely because ≈70% of65

our paired-end reads could be merged into a single read. The quality of the filtered data was66

high; for all but one capture experiment, the average Phred quality score was the maximum67

possible (36). Despite this aggressive filtration, we retained enough data to get high coverage68

of both nuclear exon regions (>100×) and mitochondrial DNA (>1000×) (Table S3).69

2. de novo Assembly: In exome capture experiments with non-model organisms, researchers70

typically do not know the sequence flanking targets. Because of edge effects, inclusion of71

just the target sequence will lead to reduced mapping efficiency (Bi et al. 2012). However, a72

portion of the flanking region is also captured and can be reconstructed using de novo assem-73

blers. Using this approach, we recovered an average of 60% longer sequence length (Table74

S2). Most of this additionally assembled sequence is non-coding sequence surrounding our75

target exons.76

2



3. Annotation: We annotated the de novo assemblies of the cleaned sequence reads to identify77

the targets to which they matched. We successfully assembled 100% of targeted exons. The78

majority of assembled contigs were longer than the target exons. Many of the assembled79

contigs did not match any of our targeted exons. Although some of these contigs are likely80

”biologically real”, we opted for a conservative approach and excluded them from down-81

stream analyses. These contigs could be analyzed in future work.82

4. Sensitivity: Sensitivity is a measure of what portion of in-target assemblies are represented83

by sequence data. Here, every single exon was covered by at least 1× coverage.84

5. Specificity: Specificity is measured as the percentage of cleaned reads that map onto tar-85

geted regions. Depending on the technology, specificity can range from 10% to 90% across86

experiments (Sulonen et al. 2011), but variance in specificity should be low within an exper-87

iment. Low variance suggests that the procedure worked uniformly across captures. In this88

study, we found that specificity ranged from 58.2% to 75.2% across captures and that vari-89

ance within an array was low (Table S3; Fig. S9). Our experiment worked comparatively90

better than many other array-based exon capture studies (Mamanova et al. 2010).91

6. Coverage metrics: Coverage metrics illustrate the uniformity of results across libraries on92

the same capture. Coverage can indicate if coverage responds to other characteristics of the93

data (such as GC-content) as expected. Here, we measured several metrics:94

• Correlation of coverage across libraries in a capture: high correlation suggests consistency of95

capture. Coverage was highly correlated across libraries on the same capture (r > 0.97;96

Fig. S10).97

• Correlation of loci across captures: high correlation suggests that differences in capture98

efficiency across loci are due more to locus-specific effects and less to stochastic effects99

of a given capture experiment. Coverage of orthologous loci across different capture100

experiments was significant and high (r = 0.53− 0.70; Fig. S11).101

• Density plots of coverage: ideally, coverage across loci should be tightly distributed, indi-102

cating no prevalent bias in capture efficiency at a given locus. Most loci had about 200×103

coverage, although there is some spread in the distribution of coverage across loci (Fig.104

S12).105

• Correlation of divergence with coverage: in our experiments, we were capturing orthol-106

ogous loci across two sister lineages in a lineage-pair. To ensure no bias in capture107

efficiency if the two orthologs were divergent, we included both orthologs on our array.108

As such, we would expect to see little correlation of coverage with sequence divergence109

between the orthologs. However, we see significant but modest correlation between110

divergence and coverage (r = 0.16− 0.19; Fig. S13).111

• Correlation of coverage with GC-content: coverage is expected to have a hump-shaped112

relationship with GC-content, such that coverage is low at low- and high-GC content.113

We recover this pattern in our data (Fig. S14).114

In sum, our results indicate that our exome capture experiments were successful and that our115

downstream inference should be robust to technical artifacts.116
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4 Fitting Clines117

To fit clines, our approach was as following for every variant:118

1. Calculate allele frequency for the variant in Northern and Southern parental populations119

based on genotype data from transcriptomes120

2. Calculate allele frequency data for the variant in the nine transect populations using pooled121

exome capture data – allele frequencies were calculated using the samtools mpileup feature to122

count how many reads corresponded to the variant123

3. Set allele frequencies to missing for any pooled population with <50× coverage124

4. Keep only those variants that have allele frequency data at five or more transect populations125

5. Keep only those variants that have ≥0.5 difference in allele frequency across the Northern126

vs. Southern populations127

6. If necessary, invert allele frequencies for the cline so that Northern populations are at low128

frequency for the variant of interest129

7. Call patterns at a variant a sweep if:130

• if parental populations have ≥0.5 difference in allele frequency131

• if allele frequencies for all 9 populations in the transect are either (1) uniformly between132

0 and 0.2 or (2) between 0.8 and 1133

8. If not a sweep, try fitting a cline if:134

• The two Northern tail populations (the parental ’N’ and 10-km North population) and135

the two Southern tail populations (the parental ’S’ and 10-km South population) have136

an allele frequency difference ≥0.5137

• If there are data for five of the seven central populations to be used in cline fitting138

– Define pmin as the minimum allele frequency across the transect139

– Define pmax as the maximum allele frequency across the transect140

– Set allele frequencies of 0 to 0.001 to avoid odd edge behavior of likelihood function141

– Set allele frequencies of 1 to 0.999 to avoid odd edge behavior of likelihood function142

– Rescale allele frequencies to be on a 0→1 scale based on pmin and pmax143

– Fit cline using a brute-force maximum-likelihood approach in Python using the144

maximum-likelihood equation found in (Porter et al. 1997)145

* This maximum-likelihood equation calculates the likelihood of the empirical146

allele frequencies compared to those expected under a simple sigmoidal model,147

weighting each deme by its sample size148

* Search space for cline width is defined as being between 1e2 and 2e4, in units149

of 5e2150

* Search space for cline center is defined as being between 1e2 and 5e3, in units151

of 25152
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* The optimization function (scipy.optimize) was used to explore this space153

* Final parameter estimates can fall outside the search space because the opti-154

mization function does ”finishing” after exploring the parameter space155

9. If not a sweep or cline, the variant goes uncharacterized156
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5 Supplemental Figures188

infer divergence from
transcriptomic data

(parental N)

infer introgression from
exome capture data

from pooled populations
(pops. 1 - 7)

infer divergence from
transcriptomic data

(parental S)

10 km N
population

10 km S
population

Figure S1: Basic sampling scheme used in this study. Transcriptome data from geographically iso-
lated ”parental” populations were used to characterize genomic divergence and to design arrays.
Anonymously pooled exome capture data from the nine populations in the hybrid zones were
used to infer introgression extent. However, only the central seven populations were used in cline
fitting as the 10-kilometer populations were off the linear transect through the hybrid zone.
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Figure S2: Results from simulations exploring how increasing sequencing effort influences our
ability to infer allele frequencies from pooled populations accurately. Each column represents a
different simulated allele frequency: 0.01, 0.1, 0.25, 0.5; each row represents a different simulated
coverage: 50, 100, 200, 500. The dotted red line indicates the true allele frequency. These results
suggest, that across a range of allele frequencies, increasing sequencing coverage above 50× only
modestly improves the accuracy of allele frequency estimates.
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Figure S3: Results from simulations exploring role of sampling drift in inferring cline widths from
pooled populations. Each simulation was parameterized by the empirical sampling design for
the relevant contact (i.e., location of sampled populations, number of sampled individuals, and
average exonic coverage). We ran 500 simulations across each of four cline widths: the mean,
median, 25%, and 75% cline width inferred for the contact. We then used our cline fitting procedure
to infer cline width from the simulated data. Shown is the distribution of the inferred cline widths,
and in black, the cline width under which the data were simulated. These results suggest that,
although our smaller sample sizes and pooling likely increased the error in our cline estimates,
this error is insufficient to explain differences in the mean and variance of cline widths among
hybrid zones.
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Figure S4: Results from simulations exploring role of sampling drift in inferring cline centers from
pooled populations. Each simulation was parameterized by the empirical sampling design for
the relevant contact (i.e., location of sampled populations, number of sampled individuals, and
average exonic coverage). We ran 500 simulations across each of four cline widths: the mean,
median, 25%, and 75% cline width inferred for the contact. We then used our cline fitting procedure
to infer cline center from the simulated data. Shown is the distribution of the inferred cline center,
and in black, the cline center under which the data were simulated. These results suggest that,
although our smaller sample sizes and pooling likely increased the error in our cline estimates,
this error is insufficient to explain differences in mean cline centers among hybrid zones.
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designed 4 arrays targeting an 
average of 3080 exons (1.83 Mb)

captured sequence from 9 
populations from each of 4 contacts

cleaned, assembled and annotated
exome capture data

identi�ed variable sites

calculated allele frequencies 
at variable sites

inferred patterns of introgression
at variable sites where pdi� > 0.5

�ltered variable sites for coverage

sequenced and analyzed 
transcriptomes of 5 individuals 

per allopatric population, 
two populations per contact

called variants across transcripts
(Singhal and Moritz 2013)

calculated dN/dS, FST, and dxy
across complete coding sequence 

& all exons

Figure S5: Summary of bioinformatics and inference pipeline used in this study. Transcriptome
data from allopatric populations far from the contact zone were used both to design exome cap-
ture arrays and to infer patterns of genomic divergence between lineages. These data were pub-
lished and analyzed in previous studies (Singhal 2013; Singhal and Moritz 2013). Pooled exome
capture data from nine populations sampled through the hybrid zone were used to infer patterns
of introgression. Here, pdi f f refers to the maximum difference in allele frequency seen across the
geographically-isolated populations (parental N, parental S) and the 10 km N and S populations
(Fig. S1).
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Figure S6: Results from simulations estimating the false negative rate in inferring loci with a
”sweep” pattern from pooled populations. Simulations were parameterized using the average
sampling design across contacts (i.e., location of sampled populations, number of sampled indi-
viduals, and average exonic coverage). We set the parental populations to have varying levels of
allele frequency difference (pdi f f ≥ 0.5; shown on the x-axis) and set the transect populations to
have expected allele frequencies of either 0.01, 0.05, 0.1. Thus, this parameter space encompasses
that for loci categorized as ”sweeps”. We ran 1000 simulations across each parameter set and cal-
culated what percentage of simulations failed to recover a ”sweep” pattern (or, the false negative
rate). False negative rates are high when the parental populations are less differentiated at a vari-
ant or when the alternative variant is simulated segregating at non-zero frequencies in the transect
populations.
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Figure S7: Results from simulations estimating the false positive rate in inferring loci with a
”sweep” pattern from pooled populations. Simulations were parameterized using the average
sampling design across contacts (i.e., location of sampled populations, number of sampled indi-
viduals, and average exonic coverage). We set the parental populations to have varying levels
of allele frequency difference (shown on the x-axis) and set the transect populations to have ex-
pected allele frequencies ranging from 0.2 to 0.5. None of this parameter space falls in the ”sweep”
category. We ran 1000 simulations across each parameter set and calculated what percentage of
simulations recovered a ”sweep” pattern (or, the false positive rate). Across this parameter space,
we recovered no false positives. However, these simulations are simple in their approach, and our
actual false positive rate is likely non-zero.
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Figure S8: Density histograms comparing distributions of summary statistics (dxy, dN/dS, FST)
for all transcripts sequenced for all seven focal lineages (in red) and for the subset of transcripts
targeted on exome capture arrays (in blue). Rescaled density was calculated by dividing density
estimates by the maximum density seen for the distribution. These results show that transcripts
whose exons were included in the exome capture array were more divergent than those transcripts
that were not included. However, general patterns of molecular divergence are similar.
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Figure S9: Specificity, or proportion of cleaned reads mapping onto target exons, summarized
across all libraries for a given capture. Captures were done by contact zone. In general, specificity
was high and uniform across libraries in a given contact; these results help validate the success of
the exome capture experiment.

Figure S10: Correlation in coverage across the same loci from different libraries from the same
capture experiment. Captures were done by contact zone; here, we show results from a randomly
selected contact zone, Carlia rubrigularis N/S. The red dotted line is at unity. In general, correlation
is high, suggesting that libraries within a given capture experiment performed similarly. These
results help validate the success of the exome capture experiment.
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Figure S11: For orthologs shared across multiple exome capture arrays, correlation in coverage
between different capture experiments. Captures were done by contact zone. The red dotted line
is at unity. In general, correlation is high, suggesting that locus-specific characteristics that affect
capture success (i.e., GC content) had similar effects across contacts. These results help validate the
success of the exome capture experiment.
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Figure S12: Density plots of locus-wide coverage by capture experiment, with frequencies shown
on the left y-axis. Captures were done by contact zone. The dotted line shows accumulation of
coverage across increasing coverage levels, with percentages shown on the right y-axis. Although
there is strong mode in the coverage distributions, coverage across loci shows considerable hetero-
geneity. This is typical of most exome capture experiments, e.g. (Bi et al. 2012).
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Figure S13: Correlation between coverage at a given locus and its sequence divergence (dxy) be-
tween lineages in the contact zone. Because each exon on the exome capture array included alle-
les from both lineages, we would predict minimal correlation between divergence and coverage.
However, we see modest but significant correlation across all four contact zones.
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Figure S14: Relationship between coverage at a given locus and GC-content at that locus. As ex-
pected, we recover a hump-shaped pattern in which loci with moderate levels of GC-content have
the highest coverage. These results help validate the success of the exome capture experiment.
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Figure S15: Correlation between allele frequencies estimated from individual genotyping (Singhal
and Moritz 2013) and allele frequencies estimated from sequencing anonymously pooled popula-
tions of the same individuals. Points are colored by the contact zone from which the allele was
measured. Correlation between both estimates of allele frequencies was high, suggesting that our
pooled approach allows us to estimate allele frequency accurately.
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Figure S16: Variance in allele frequency estimates across nearly-fixed and fixed single nucleotide
polymorphisms (SNPs) between the mtDNA sequences of the two lineages meeting in each contact
zone. As mtDNA does not recombine, all SNPs across mtDNA should have the same allele fre-
quency, if we assume no heteroplasmy or numts. Populations are labeled as shown in Fig. S1. Only
SNPs where the difference in allele frequency between the two parental populations was greater
than 0.8 were included. Variance in allele frequency estimates across SNPs was low, suggesting
that our pooled strategy did not introduce significant heterogeneity. However, we note that cov-
erage of mtDNA was higher than that of nuclear markers (Table S3), and increased coverage does
slightly improve the accuracy of pooled allele frequency estimates (Fig. S2).
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Figure S17: Type of clines inferred at filtered SNPs by each contact zone. Lineage-pairs are ordered
most to least divergent (L → R). ’sweep N’ refers to those loci where the allele belonging to the
northern lineage in each contact zone has swept into the southern lineage, and ’sweep S’ refers
to southern alleles introgressing into the northern lineage. We were able to fit considerably more
clines in the more divergent lineage-pairs partially because SNPs between these lineages were
more highly differentiated.
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Figure S18: Distributions for A. cline width and B. cline center across an average of 3.2K clines
at contact zones between each of the four lineage-pairs. C. Moran’s I, a measure of spatial auto-
correlation applied to genomic distance, for cline width at each of contact across an average of 2.2K
comparisons for clines ≤500 bp and 490 comparisons for clines >500 bp. Uncertainty in Moran’s
I was estimated by drawing 100 bootstrap samples and recalculating means. Rescaled density
was calculated by dividing density estimates by the max density seen for the distribution. Only
those clines found in the 1120 exons targeted across all four contact zones are shown. Patterns are
quantitatively and qualitatively similar to those found across all exons (Fig. 3), although patterns
for Moran’s I are considerably noisier.
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Figure S19: A test for concordance in cline widths across contact zones. For each contact, we
randomly selected 100 clines from the 45% - 55% distribution of cline widths. We then repeated
our cline-fitting procedure, forcing these clines to be concordant with the median cline width for
itself and each other contact zone. Cline center was allowed to vary. Shown are the values for
the log-likelihood test between forcing concordance (our null model) to allowing cline width to
vary (our alternative model). The black line indicates the chi-square significance value for p<0.05,
d.f.=1. For all contacts, constraining cline width of the sampled clines to the median cline width
of the distribution from which they were sampled did not lead to worse model fits. This was
as expected. However, for all comparisons but L. coggeri N/C to S. basiliscus C/S, allowing cline
width to vary lead to significantly better model fits than forcing concordance. This suggests that
median cline widths vary significantly between all contacts. However, L. coggeri N/C median cline
width does not appear to be significantly different from S. basiliscus C/S, although S. basiliscus C/S
median cline width is significantly different from L. coggeri N/C.
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6 Supplemental Tables189

contact population name sample
size latitude longitude

transect
location

(m)
C. rubrigularis N/S pop1 16 -17.156 145.564 764
C. rubrigularis N/S pop2 16 -17.154 145.569 1278
C. rubrigularis N/S pop3 16 -17.153 145.578 2334
C. rubrigularis N/S pop4 16 -17.147 145.581 2676
C. rubrigularis N/S pop5 16 -17.148 145.586 3175
C. rubrigularis N/S pop6 16 -17.143 145.590 3689
C. rubrigularis N/S pop7 16 -17.133 145.616 6732
C. rubrigularis N/S parental N 5 -16.611 145.452 NA
C. rubrigularis N/S 10 km N 16 -17.075 145.596 NA
C. rubrigularis N/S 10 km S 16 -17.205 145.679 NA
C. rubrigularis N/S parental S 5 -17.694 145.695 NA

L. coggeri C/S pop1 14 -17.172 145.687 0
L. coggeri C/S pop2 16 -17.205 145.679 3730
L. coggeri C/S pop3 16 -17.215 145.687 4764
L. coggeri C/S pop4 16 -17.215 145.686 4803
L. coggeri C/S pop5 16 -17.215 145.688 4829
L. coggeri C/S pop6 16 -17.220 145.695 5319
L. coggeri C/S pop7 16 -17.273 145.663 11295
L. coggeri C/S parental N 5 -16.976 145.777 NA
L. coggeri C/S 10 km N 16 -17.142 145.629 NA
L. coggeri C/S 10 km S 16 -17.295 145.712 NA
L. coggeri C/S parental S 5 -17.676 145.713 NA
L. coggeri N/C pop1 15 -16.659 145.480 3497
L. coggeri N/C pop2 16 -16.660 145.485 4075
L. coggeri N/C pop3 16 -16.664 145.492 4988
L. coggeri N/C pop4 16 -16.664 145.496 5546
L. coggeri N/C pop5 15 -16.666 145.500 6029
L. coggeri N/C pop6 16 -16.671 145.503 6419
L. coggeri N/C pop7 16 -16.675 145.506 6740
L. coggeri N/C parental N 5 -16.579 145.315 NA
L. coggeri N/C 10 km N 15 -16.617 145.458 NA
L. coggeri N/C 10 km S 16 -16.753 145.593 NA
L. coggeri N/C parental S 5 -16.976 145.777 NA

S. basiliscus N/C pop1 16 -17.608 145.772 0
S. basiliscus N/C pop2 10 -17.608 145.768 679
S. basiliscus N/C pop3 7 -17.626 145.744 4494
S. basiliscus N/C pop4 16 -17.665 145.723 7881
S. basiliscus N/C pop5 14 -17.655 145.717 8893
S. basiliscus N/C pop6 8 -17.673 145.715 9414
S. basiliscus N/C pop7 8 -17.694 145.695 12707
S. basiliscus N/C parental N 15 -17.292 145.634 NA
S. basiliscus N/C 10 km N 5 -17.579 145.697 NA
S. basiliscus N/C 10 km S 5 -17.699 145.523 NA
S. basiliscus N/C parental S 16 -18.199 145.849 NA

Table S1: Summary of geographic locations and sample sizes of populations included in this work.
Parental populations and 10 km populations were sampled off the transect through the hybrid
zone; thus, we do not report a transect location for them.
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contact
number of

targets
total length as
designed (bp)

number of
probes

total target
length as

assembled (bp)
C. rubrigularis N/S 3224 1.86e6 9.70e5 3.02e6

L. coggeri C/S 3333 1.83e6 9.57e5 3.08e6
L. coggeri N/C 2889 1.81e6 9.69e5 3.62e6

S. basiliscus N/C 2870 1.82e6 9.68e5 2.95e6

Table S2: Summary of exome capture array designs and resulting assemblies. We were able to
extend the assembled target length from the total target length anywhere from 60% to 100% by
capturing and assembling the sequence flanking our targets.
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contact population
name

raw
data
(bp)

cleaned
data
(bp)

% of
raw
data
kept

avg.
quality
score
(post-

cleanup)

specificity
avg.

exonic
cov.

avg.
mtDNA

cov.

C. rubrigularis N/S 10 km N 4.8e9 2.2e9 46.7% 35 62.9% 351 1026
C. rubrigularis N/S 10 km S 3.5e9 1.6e9 46.4% 35 65.4% 267 260
C. rubrigularis N/S pop1 2.9e9 1.3e9 45.4% 35 67.8% 224 943
C. rubrigularis N/S pop2 6.8e9 3.2e9 46.8% 35 62.8% 488 1057
C. rubrigularis N/S pop3 5.9e9 2.8e9 47.4% 35 62.2% 433 1055
C. rubrigularis N/S pop4 6.5e9 3.0e9 46.1% 35 62.6% 463 1005
C. rubrigularis N/S pop5 8.0e9 3.8e9 47.9% 35 65.8% 545 1047
C. rubrigularis N/S pop6 5.4e9 2.5e9 46.3% 35 58.2% 410 478
C. rubrigularis N/S pop7 1.0e10 4.8e9 46.4% 35 57.4% 665 528

L. coggeri C/S 10 km N 2.2e9 1.2e9 55.3% 36 69.9% 381 7792
L. coggeri C/S 10 km S 2.5e9 1.4e9 55.3% 36 72.5% 325 7680
L. coggeri C/S pop1 6.1e9 3.3e9 54.2% 36 65.8% 285 7721
L. coggeri C/S pop2 5.4e9 3.0e9 55.7% 36 64.6% 265 7682
L. coggeri C/S pop3 5.5e9 3.1e9 55.4% 36 68.3% 273 7781
L. coggeri C/S pop4 4.3e9 2.4e9 55.9% 36 68.8% 505 7778
L. coggeri C/S pop5 5.3e9 2.9e9 55.2% 36 71.1% 743 7788
L. coggeri C/S pop6 4.0e9 2.2e9 55.0% 36 67.7% 198 7691
L. coggeri C/S pop7 1.4e9 8.1e8 58.6% 36 75.2% 514 7681
L. coggeri N/C 10 km N 4.9e9 2.9e9 58.6% 36 65.9% 216 1011
L. coggeri N/C 10 km S 4.3e9 2.5e9 57.8% 36 65.2% 248 7296
L. coggeri N/C pop1 3.3e9 2.0e9 59.3% 36 70.8% 534 2557
L. coggeri N/C pop2 3.6e9 2.0e9 57.6% 36 63.6% 478 6370
L. coggeri N/C pop3 3.5e9 2.0e9 58.2% 36 66.8% 506 2539
L. coggeri N/C pop4 6.8e9 3.8e9 56.7% 36 66.3% 408 7253
L. coggeri N/C pop5 1.0e10 5.8e9 56.6% 36 71.7% 485 7336
L. coggeri N/C pop6 2.3e9 1.4e9 59.0% 36 65.6% 381 7383
L. coggeri N/C pop7 7.1e9 4.1e9 57.8% 36 63.4% 149 7266

S. basiliscus N/C 10 km N 4.8e9 2.7e9 55.3% 36 65.9% 424 7459
S. basiliscus N/C 10 km S 5.5e9 2.9e9 53.9% 36 67.4% 478 7476
S. basiliscus N/C pop1 3.0e9 1.7e9 56.3% 36 67.4% 272 5272
S. basiliscus N/C pop2 2.0e9 1.1e9 55.1% 36 66.2% 197 6392
S. basiliscus N/C pop3 5.8e9 3.2e9 55.5% 36 65.5% 504 7562
S. basiliscus N/C pop4 4.9e9 2.7e9 54.9% 36 65.6% 437 7595
S. basiliscus N/C pop5 2.5e9 1.4e9 55.3% 36 71.1% 247 6331
S. basiliscus N/C pop6 6.7e9 3.8e9 56.8% 36 71.8% 609 7480
S. basiliscus N/C pop7 8.5e9 4.7e9 55.4% 36 68.2% 769 7529

Table S3: Summary of data collected, coverage, and specificity across sequenced populations. In
general, we lost about half of our raw data because many of our paired-end sequencing reads
could be merged into a single read. Still, we had high average coverage across loci, and specificity
was fairly uniform across populations.
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contact
SNPs pre-
filtering

SNPs post-
filtering

non-coding
SNPs

non-
synonymous

SNPs

synonymous
SNPs

C. rubrigularis N/S 112098 44505 17290 9062 18153
L. coggeri C/S 129153 49354 16397 10291 22666
L. coggeri N/C 242578 79192 29388 15364 34440

S. basiliscus N/C 180056 57007 15098 13192 28717

Table S4: Summary of single nucleotide polymorphisms (SNPs) discovered in the captured tar-
gets. SNPs were filtered to remove any SNPs that had <50× coverage at two or more populations
across the central nine populations (Fig. S1). Non-coding SNPs are those occurring in introns and
untranslated regions.

type contact 1 contact 2 number genes compared correlation p-value
dN/dS L. coggeri C/S C. rubrigularis N/S 9686 0.334 3.77e-251

L. coggeri C/S S. basiliscus N/C 9464 0.300 1.31e-195
L. coggeri C/S L. coggeri N/C 9471 0.436 0.00e+00

C. rubrigularis N/S S. basiliscus N/C 9570 0.288 1.40e-182
C. rubrigularis N/S L. coggeri N/C 9312 0.310 3.85e-207
S. basiliscus N/C L. coggeri N/C 9210 0.300 1.78e-191

dxy L. coggeri C/S C. rubrigularis N/S 9752 0.425 0.00e+00
L. coggeri C/S S. basiliscus N/C 9535 0.379 0.00e+00
L. coggeri C/S L. coggeri N/C 9535 0.542 0.00e+00

C. rubrigularis N/S S. basiliscus N/C 9631 0.372 0.00e+00
C. rubrigularis N/S L. coggeri N/C 9372 0.375 0.00e+00
S. basiliscus N/C L. coggeri N/C 9269 0.414 0.00e+00

FST L. coggeri C/S C. rubrigularis N/S 9319 0.425 0.00e+00
L. coggeri C/S S. basiliscus N/C 9047 0.304 4.1e-193
L. coggeri C/S L. coggeri N/C 9078 0.457 0.00e+00

C. rubrigularis N/S S. basiliscus N/C 9069 0.315 1.6e-207
C. rubrigularis N/S L. coggeri N/C 8847 0.319 6.2e-208
S. basiliscus N/C L. coggeri N/C 8684 0.28 1.8e-156

Table S5: Pearson correlations for gene-by-gene comparisons for three different metrics that char-
acterize patterns of locus evolution between lineages. The metrics are dN/dS, raw sequence diver-
gence (dxy), and FST. We first calculated these metrics for each contact across the coding sequence
for all assembled transcripts. These locus-specific metrics were then compared across contacts. On
average, there were 15.7 variable sites in a transcript (average length=1331). Across all metrics,
and across all comparisons, we recover significant and relatively high correlations. These results
suggest repeatability in the patterns of genomic divergence across lineage-pairs related across >15
million years of evolution.
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individually-genotyped clines pooled clines
hybrid index width average cline width number of loci average cline width median cline width number of loci

L. coggeri N/C 7865 8957 11 8988 6758 5121
S. basiliscus N/C NA 4929 2 16907 16209 1556

C. rubrigularis N/S 1500 3704 11 3485 2528 9939
L. coggeri C/S 370 403 11 1643 334 13493

Table S6: Comparison of cline widths estimated from individual genotypes across many fewer
markers (N = 2 − 11), as previously published in (Singhal and Moritz 2013), and cline widths
estimated from pooled data across many more markers (N = 1.5K− 13.4K). These results suggest
that general quantitative and qualitative patterns between the two cline inference approaches are
similar. However, S. basiliscus N/C shows a marked difference between the two datasets. This is
likely because our estimates for S. basiliscus N/C were originally inferred using just two loci.

transect summary statistic correlation p-value N
L. coggeri C/S FST -0.23 1.7e-48 3902

dxy 0.05 0.0016 4034
da -0.11 4.4e-12 4034

dN/dS -0.02 0.36 2619
C. rubrigularis N/S FST -0.21 4.7e-37 3446

dxy -0.01 0.4 3595
da -0.13 2.7e-15 3595

dN/dS 0.01 0.5 2306
S. basiliscus N/C FST -0.03 0.4 872

dxy -0.01 0.67 909
da 0.00 0.99 909

dN/dS -0.01 0.84 704
L. coggeri N/C FST -0.09 1.4e-5 2235

dxy -0.03 0.2 2363
da -0.03 0.17 2363

dN/dS -0.01 0.83 1618

Table S7: Pearson correlations between summary statistics for genomic divergence and cline width
across the four sampled transects. The summary statistics are dN/dS, as calculated across the
coding sequence for a gene, raw sequence divergence (dxy) and net sequence divergence (da) by
exon, and FST by exon. Cline width was averaged across all clines fit in a given exon or gene.
Before calculating correlations, we took the natural log of the mean cline width to make the data
normal. These results show weak but significantly negative correlations between FST and da and
cline width. This suggests loci with high relative differentiation are prone to introgressing less.
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contact α-value num. of sig. GO terms FDR
L. coggeri C/S 0.001 6 1.9

0.01 34 18.7
0.05 156 93.5

C. rubrigularis N/S 0.001 2 1.7
0.01 17 16.5
0.05 94 82.6

S. basiliscus N/C 0.001 1 0.4
0.01 7 4.2
0.05 21 21.2

L. coggeri N/C 0.001 2 1.2
0.01 9 11.7
0.05 46 58.6

Table S8: The number of Gene Ontology (GO) terms that had significantly narrower cline widths
than the background cline width, across different α-values. To determine significance, we con-
ducted 1000 bootstraps, in which we randomly drew clines in proportion to their frequency for a
given term. We then calculated the difference in the mean cline width of these subsetted data to
the background cline width. Significance is calculated as the proportion of simulations where the
difference in cline widths is equal to or greater than the difference calculated for the observed data.
Also shown is the predicted false discovery rate (FDR); across almost all contacts and all α-values,
the FDR is higher or similar to the number of GO categories found to be significant. Based on these
results, we limit our interpretation of the GO analyses.

contact 1 contact 2 N num. shared, obs. num. shared, exp.
L. coggeri C/S C. rubrigularis N/S 1429 17 7.3
L. coggeri C/S S. basiliscus N/C 417 1 1.2
L. coggeri C/S L. coggeri N/C 1085 4 3.2

C. rubrigularis N/S S. basiliscus N/C 418 0 0.9
C. rubrigularis N/S L. coggeri N/C 1012 3 2.2

Table S9: The number of significant Gene Ontology (GO) terms that are shared between contacts.
We determined significance of GO terms as described in Table S8. N indicates the number of
GO terms that were represented by genes captured in both contacts. The number of expected
shared GO terms was calculated by (1) for each contact, sampling the represented list of GO terms,
weighted by the number of significant terms in the contact, (2) calculating the number of shared
GO terms between both contacts, and (3) summarizing across 1000 bootstraps. For all contact
comparisons but L. coggeri C/S and C. rubrigularis N/S, we see no greater sharing than expected
by chance.
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contact 1 contact 2 N correlation p-value
L. coggeri C/S C. rubrigularis N/S 1429 0.062 0.0184
L. coggeri C/S S. basiliscus N/C 417 0.087 0.0774
L. coggeri C/S L. coggeri N/C 1085 -0.010 0.736

C. rubrigularis N/S S. basiliscus N/C 418 -0.066 0.178
C. rubrigularis N/S L. coggeri N/C 1012 0.079 0.0116
S. basiliscus N/C L. coggeri N/C 399 -0.002 0.963

Table S10: Pearson correlations across average cline widths for Gene Ontology (GO) terms across
all six contact comparisons. We averaged cline widths at variants in all genes for a given GO term
and then compared these average values across contacts. While some of these correlations are
significant, they are weaker than gene-by-gene correlations (Fig. 4).

contact differentiation diversity N correlation p-value
L. coggeri C/S FST π, Northern 12092 -0.475 0.00e+00

FST π, Southern 12092 -0.437 0.00e+00
C. rubrigularis N/S FST π, Northern 12050 -0.371 0.00e+00

FST π, Southern 12050 -0.323 3.40e-290
S. basiliscus N/C FST π, Northern 11141 -0.293 5.69e-219

FST π, Southern 11141 -0.255 6.86e-165
L. coggeri N/C FST π, Northern 10862 -0.318 7.09e-254

FST π, Southern 10862 -0.297 5.72e-220

Table S11: Spearman correlations between locus-specific measures of relative differentiation (FST)
and diversity (π). Differentiation and diversity were calculated across coding sequence in the
transcriptome data set. Diversity measures shown for the northern ”parental” population in each
lineage-pair and the southern ”parental” population. As expected, diversity is negatively corre-
lated with relative differentiation.

contact measure correlation p-value N
L. coggeri C/S GC* 0.12 2.6e-10 2923

C. rubrigularis N/S GC* 0.10 6.2e-07 2587
S. basiliscus N/C GC* 0.05 0.16 772
L. coggeri N/C GC* 0.01 0.61 1803

Table S12: Spearman correlations between locus-specific measures of GC* and average cline width
at that locus. GC* measures expected equilibrium levels of GC content (Meunier and Duret 2004).
Because GC-biased gene conversion leads to an excess of GC substitutions, GC* is higher in areas
of high recombination compared to regions of low recombination. We see positive correlations
between GC* and cline width at two of the four contact zones, suggesting cline width is narrower
in regions of low recombination.
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contact 1 contact 2 model AICc relative likelihood
L. coggeri C/S C. rubrigularis N/S width, contact 1 ∼ FST, contact 2 2648.02 0.00018
L. coggeri C/S C. rubrigularis N/S width, contact 1 ∼ FST, contact 2 + width, contact 2 2630.79 1
L. coggeri C/S L. coggeri N/C width, contact 1 ∼ FST, contact 2 1944.57 1
L. coggeri C/S L. coggeri N/C width, contact 1 ∼ FST, contact 2 + width, contact 2 1946.58 0.37

C. rubrigularis N/S S. basiliscus N/C width, contact 1 ∼ FST, contact 2 666.74 0.16
C. rubrigularis N/S S. basiliscus N/C width, contact 1 ∼ FST, contact 2 + width, contact 2 663.12 1

Table S13: Linear-model fitting results used to determine if the significant correlation in cline
widths between contacts (Fig. 4) is merely because cline widths are correlated to FST (Table S7),
which is also correlated between contacts (Table S5). To the three significant comparisons, we fit
two linear models. The first model fits cline widths in contact 1 to FST in contact 2; the second
model fits cline widths in contact 1 to both FST and cline widths in contact 2. Shown are AICc
scores and relative likelihoods. Only for C. rubrigularis N/S - L. coggeri C/S is the second model
a significantly better fit. For the other two contacts, this suggests that the correlation among cline
widths between contacts might simply be because FST is correlated across contacts and FST is cor-
related to cline widths.
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